

# UC200A-GL Hardware Design

**UMTS/HSPA+ Module Series** 

Version: 1.0

Date: 2022-06-30

Status: Released







At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

#### **Quectel Wireless Solutions Co., Ltd.**

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@guectel.com

Or our local offices. For more information, please visit: http://www.guectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit: <u>http://www.quectel.com/support/technical.htm</u>. Or email us at: <u>support@quectel.com</u>.

# **Legal Notices**

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

# **Use and Disclosure Restrictions**

#### **License Agreements**

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

## Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.



## Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

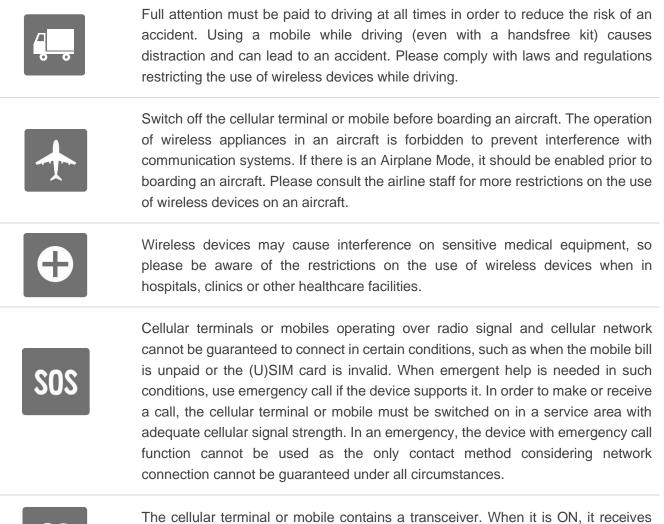
## **Third-Party Rights**

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

# **Privacy Policy**

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.


# Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2022. All rights reserved.

# **Safety Information**

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.





The cellular terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.



In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other cellular terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

# **About the Document**

# **Revision History**

| Version | Date       | Author                 | Description              |
|---------|------------|------------------------|--------------------------|
| -       | 2021-10-29 | Anthony LIU/Ethan FANG | Creation of the document |
| 1.0     | 2022-06-30 | Bowen LIAO/Ethan FANG  | First official release   |

## Contents

| Saf | ety l                  | nforma   | ition                                                        | 3  |
|-----|------------------------|----------|--------------------------------------------------------------|----|
| Abo | out tl                 | he Doo   | ument                                                        | 4  |
| Cor | ntent                  | s        |                                                              | 5  |
| Tab | le In                  | dex      |                                                              | 7  |
| Fig | ure l                  | ndex     |                                                              | 8  |
| 1   | Intr                   | oducti   | on                                                           | 10 |
|     | 1.1.                   | Sp       | ecial Marks                                                  | 10 |
| 2   | Pro                    | duct C   | verview                                                      | 11 |
|     | 2.1.                   | Fre      | equency Bands and Functions                                  | 11 |
|     | 2.2.                   | Ke       | y Features                                                   | 12 |
|     | 2.3.                   | Fu       | nctional Diagram                                             | 14 |
|     | 2.4.                   | Pir      | Assignment                                                   | 15 |
|     | 2.5.                   | Pir      | Description                                                  | 16 |
|     | 2.6.                   | E∨       | B Kit                                                        | 20 |
| 3   | Оре                    | erating  | Characteristics                                              | 21 |
|     | 3.1.                   | Op       | erating Modes                                                | 21 |
|     | 3.2.                   | Sle      | ep Mode                                                      | 22 |
|     |                        | 3.2.1.   | UART Application                                             | 22 |
|     |                        | 3.2.2.   | USB Application with USB Remote Wakeup Function              | 22 |
|     |                        | 3.2.3.   | USB Application with USB Suspend/Resume and MAIN_RI Function | 23 |
|     |                        | 3.2.4.   | USB Application without USB Suspend Function                 | 24 |
|     | 3.3.                   | Air      | plane Mode                                                   | 25 |
|     | 3.4.                   | Po       | wer Supply                                                   | 25 |
|     |                        | 3.4.1.   | Power Supply pins                                            | 25 |
|     |                        | 3.4.2.   | Reference Design for Power Supply                            | 26 |
|     |                        | 3.4.3.   | Requirements for Voltage Stability                           |    |
|     | 3.5.                   | Tu       | rn On                                                        | 28 |
|     |                        | 3.5.1.   | Turn on the Module with PWRKEY                               | 28 |
|     | 3.6.                   | Tu       | rn Off                                                       |    |
|     |                        | 3.6.1.   | Turn off the Module with PWRKEY                              | 30 |
|     |                        | 3.6.2.   | Turn off the Module with AT Command                          | 30 |
|     | 3.7.                   | Re       | set                                                          | 31 |
| 4   | Арр                    | olicatio | n Interfaces                                                 | 33 |
|     | 4.1.                   | US       | B Interface                                                  | 33 |
|     | 4.2.                   | US       | B_BOOT Interface                                             | 35 |
|     | 4.3.                   | (U)      | SIM Interface                                                | 36 |
|     | 4.4.                   |          | M and I2C Interfaces                                         |    |
|     | 4.5. UART Interfaces   |          |                                                              |    |
|     | 4.6. SD Card Interface |          |                                                              |    |

|   | 4.7. AD      | C Interfaces                        | 45 |
|---|--------------|-------------------------------------|----|
|   | 4.8. Indi    | ication Signal                      |    |
|   | 4.8.1.       | Network Status Indication           |    |
|   | 4.8.2.       | STATUS                              |    |
|   | 4.8.3.       | MAIN_RI                             | 48 |
| 5 | RF Specifi   | cations                             | 49 |
|   | 5.1. Cel     | lular Network                       |    |
|   | 5.1.1.       | Antenna Interface & Frequency Bands |    |
|   | 5.1.2.       | Tx Power                            | 50 |
|   | 5.1.3.       | Rx Sensitivity                      | 51 |
|   | 5.1.4.       | Reference Design                    | 51 |
|   | 5.2. Ref     | erence Design of RF Routing         | 52 |
|   | 5.3. Red     | quirements for Antenna Design       | 54 |
|   | 5.4. RF      | Connector Recommendation            | 54 |
| 6 | Electrical ( | Characteristics & Reliability       | 56 |
|   | 6.1. Abs     | solute Maximum Ratings              | 56 |
|   | 6.2. Pov     | ver Supply Ratings                  | 57 |
|   | 6.3. Pov     | ver Consumption                     | 57 |
|   | 6.4. Dig     | ital I/O Characteristic             | 60 |
|   | 6.5. ESI     | D Protection                        | 61 |
|   | 6.6. Ope     | erating and Storage Temperatures    | 62 |
| 7 | Mechanica    | I Information                       | 63 |
|   | 7.1. Me      | chanical Dimensions                 | 63 |
|   | 7.2. Red     | commended Footprint                 | 65 |
|   | 7.3. Тор     | and Bottom Views                    | 66 |
| 8 | Storage, M   | anufacturing & Packaging            | 67 |
|   | 8.1. Sto     | rage Conditions                     | 67 |
|   | 8.2. Mai     | nufacturing and Soldering           | 68 |
|   | 8.3. Pac     | kaging Specifications               | 70 |
|   | 8.3.1.       | Carrier Tape                        | 70 |
|   | 8.3.2.       | Plastic Reel                        | 71 |
|   | 8.3.3.       | Packaging Process                   | 72 |
| 9 | Appendix I   | References                          | 73 |

# **Table Index**

| Table 1: Special Marks                                                             | . 10 |
|------------------------------------------------------------------------------------|------|
| Table 2: Brief Introduction of the Module                                          | 11   |
| Table 3: Wireless Network Type                                                     | 11   |
| Table 4: Key Features                                                              | . 12 |
| Table 5: I/O Parameters Definition                                                 | . 16 |
| Table 6: Pin Description                                                           | . 16 |
| Table 7: Overview of Operating Modes                                               | . 21 |
| Table 8: Pin Definition of Power Supply                                            | . 25 |
| Table 9: Pin Definition of PWRKEY                                                  | . 28 |
| Table 10: Pin Definition of RESET                                                  | . 31 |
| Table 11: Pin Definition of USB Interface                                          | . 33 |
| Table 12: Pin Definition of USB_BOOT Interface                                     | . 35 |
| Table 13: Pin Definition of (U)SIM Interface                                       | . 36 |
| Table 14: Pin Definition of PCM Interface                                          | . 39 |
| Table 15: Pin Definition of I2C Interface                                          | . 39 |
| Table 16: Pin Definition of Main UART Interface                                    | . 41 |
| Table 17: Pin Definition of Debug UART Interface                                   | . 41 |
| Table 18: Pin Definition of SD Card Interface                                      | . 43 |
| Table 19: Pin Definition of ADC Interfaces                                         | . 45 |
| Table 20: Characteristics of ADC Interfaces                                        |      |
| Table 21: Pin Definition of Indication Signal                                      | . 46 |
| Table 22: Working State of the Network Connection Status/Activity Indication       | . 46 |
| Table 23: Behaviors of the MAIN_RI                                                 | . 48 |
| Table 24: Pin Definition of Cellular Network Interface                             |      |
| Table 25: Operating Frequency                                                      | . 49 |
| Table 26: Tx Power                                                                 | . 50 |
| Table 27: Conducted RF Receiving Sensitivity                                       | . 51 |
| Table 28: Requirements for Antenna Design                                          | . 54 |
| Table 29: Absolute Maximum Ratings                                                 | . 56 |
| Table 30: Power Supply Ratings                                                     | . 57 |
| Table 31: Power Consumption                                                        | . 57 |
| Table 32: 1.8 V I/O Requirements                                                   | . 60 |
| Table 33: (U)SIM 1.8 V I/O Requirements                                            | . 61 |
| Table 34: (U)SIM 3.0 V I/O Requirements                                            | . 61 |
| Table 35: Electrostatics Discharge Characteristics (25 °C, 45 % Relative Humidity) | . 61 |
| Table 36: Operating and Storage Temperatures                                       | . 62 |
| Table 37: Recommended Thermal Profile Parameters                                   | . 69 |
| Table 38: Carrier Tape Dimension Table (Unit: mm)                                  | . 70 |
| Table 39: Plastic Reel Dimension Table (Unit: mm)                                  | . 71 |
| Table 40: Related Documents                                                        | . 73 |
| Table 41: Terms and Abbreviations                                                  | . 73 |

# Figure Index

| Figure 1: Functional Diagram                                                         | . 14 |
|--------------------------------------------------------------------------------------|------|
| Figure 2: Pin Assignment (Top View)                                                  | . 15 |
| Figure 3: Sleep Mode Application via UART                                            | . 22 |
| Figure 4: Sleep Mode Application with USB Remote Wakeup                              | . 23 |
| Figure 5: Sleep Mode Application with MAIN_RI                                        | . 23 |
| Figure 6: Sleep Mode Application without Suspend Function                            | . 24 |
| Figure 7: Reference Design of Power Supply                                           | . 26 |
| Figure 8: Power Supply Limits during Burst Transmission                              | . 27 |
| Figure 9: Star Structure of the Power Supply                                         | . 27 |
| Figure 10: Turning on the Module Using Driving Circuit                               | . 28 |
| Figure 11: Turning on the Module with a Button                                       | . 28 |
| Figure 12: Power-up Timing                                                           | . 29 |
| Figure 13: Timing of Turning off Module                                              | . 30 |
| Figure 14: Reference Circuit of RESET_N with Driving Circuit                         | . 31 |
| Figure 15: Reference Circuit of RESET_N with Button                                  | . 31 |
| Figure 16: Timing of Resetting Module                                                | . 32 |
| Figure 17: Reference Circuit of USB Application                                      | . 34 |
| Figure 18: Reference Circuit of USB_BOOT Interface                                   |      |
| Figure 19: Timing Sequence for Entering Emergency Download Mode                      | . 36 |
| Figure 20: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector | . 37 |
| Figure 21: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector  | . 38 |
| Figure 22: Timing Sequence for Short frame mode                                      | . 40 |
| Figure 23: PCM and I2C Interface Circuit Reference Design                            |      |
| Figure 24: Reference Circuit with Level-shifting Chip                                | . 42 |
| Figure 25: Reference Circuit with Transistor Circuit                                 | . 42 |
| Figure 26: Reference Circuit of SD Card Interface                                    | . 44 |
| Figure 27: Reference Circuit of the Network Status Indication                        |      |
| Figure 28: Reference Circuits of STATUS                                              | . 47 |
| Figure 29: Reference Circuit for RF Antenna Interfaces                               | . 51 |
| Figure 30: Microstrip Design on a 2-layer PCB                                        | . 52 |
| Figure 31: Coplanar Waveguide Design on a 2-layer PCB                                | . 52 |
| Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)  | . 53 |
| Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)  | . 53 |
| Figure 34: Dimensions of the Receptacle (Unit: mm)                                   | . 54 |
| Figure 35: Specifications of Mated Plugs (Unit: mm)                                  | . 55 |
| Figure 36: Space Factor of Mated Connectors (Unit: mm)                               | . 55 |
| Figure 37: Module Top and Side Dimensions (Unit: mm)                                 | . 63 |
| Figure 38: Module Bottom Dimensions View (Unit: mm)                                  | . 64 |
| Figure 39: Recommended Footprint (Bottom View)                                       | . 65 |
| Figure 40: Top and Bottom View of the Module                                         | . 66 |
| Figure 41: Recommended Reflow Soldering Thermal Profile                              | . 68 |

| Figure 42: Carrier Tape Dimension Drawing | 70 |
|-------------------------------------------|----|
| Figure 43: Plastic Reel Dimension Drawing | 71 |
| Figure 44: Packaging Process              | 72 |

# **1** Introduction

This document defines UC200A-GL module and describes its air interface and hardware interface which are connected with your applications.

With this document, you can quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. The document, coupled with application notes and user guides, makes it easy to design and set up mobile applications with the module.

## 1.1. Special Marks

#### Table 1: Special Marks

| Mark | Definition                                                                                                                                                                                                                                                                                                                                                                |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| *    | Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, or argument, it indicates that the function, feature, interface, pin, AT command, or argument is under development and currently not supported; and the asterisk (*) after a model indicates that the sample of such model is currently unavailable. |  |
| []   | Brackets ([]) used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SD_SDIO_DATA[0:3] refers to all four SD_SDIO_DATA pins, SD_SDIO_DATA0, SD_SDIO_DATA1, SD_SDIO_DATA2, and SD_SDIO_DATA3.                                                                                                                                      |  |

# **2** Product Overview

UC200A-GL is a WCDMA/GSM wireless communication module. Its general features are listed below:

- Supports HSDPA, HSUPA, HSPA+, WCDMA, EDGE and GPRS coverage.
- Provides audio support for your specific applications.
- SMT module; supports most M2M applications, like OTT, CPE, Router, data card, PAD, security and industrial-grade PDA.

#### Table 2: Brief Introduction of the Module

| Categories                 |                                                   |
|----------------------------|---------------------------------------------------|
| Package and pins number    | 80 LCC pins; 64 LGA pins                          |
| Dimensions                 | (29.0 ±0.15) mm × (32.0 ±0.15) mm × (2.4 ±0.2) mm |
| Weight                     | approx. 4.4 g                                     |
| Wireless network functions | WCDMA/GSM                                         |

# 2.1. Frequency Bands and Functions

#### Table 3: Wireless Network Type

| Wireless Network Type | UC200A-GL                      |
|-----------------------|--------------------------------|
| WCDMA                 | B1/B2/B5/B8                    |
| GSM                   | GSM850/EGSM900/DCS1800/PCS1900 |

# 2.2. Key Features

#### Table 4: Key Features

| Features                                                              | Details                                                                                                           |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Power Supply                                                          | Supply voltage: 3.4–4.5 V                                                                                         |  |
|                                                                       | <ul> <li>Typical supply voltage: 3.8 V</li> </ul>                                                                 |  |
|                                                                       | <ul> <li>Text and PDU modes</li> </ul>                                                                            |  |
| SMS                                                                   | <ul> <li>Point-to-point MO and MT</li> </ul>                                                                      |  |
| 000                                                                   | <ul> <li>SMS cell broadcast</li> </ul>                                                                            |  |
|                                                                       | SMS storage: ME by default                                                                                        |  |
| (U)SIM Interface                                                      | Supports (U)SIM card: 1.8/3.0 V                                                                                   |  |
|                                                                       | <ul> <li>Supports one digital audio interface: PCM interface</li> </ul>                                           |  |
| Audio Features                                                        | <ul> <li>GSM: HR/FR/EFR/AMR/AMR-WB</li> </ul>                                                                     |  |
| Audio i ealures                                                       | WCDMA: AMR/AMR-WB                                                                                                 |  |
|                                                                       | <ul> <li>Supports echo cancellation and noise suppression</li> </ul>                                              |  |
|                                                                       | <ul> <li>Used for audio function with external Codec</li> </ul>                                                   |  |
| PCM Interface                                                         | <ul> <li>Supports 16-bit linear data format</li> </ul>                                                            |  |
|                                                                       | <ul> <li>Supports short frame synchronization</li> </ul>                                                          |  |
|                                                                       | <ul> <li>Supports master and slave* modes</li> </ul>                                                              |  |
|                                                                       | <ul> <li>Supports one digital I2C interface</li> </ul>                                                            |  |
| I2C Interface                                                         | <ul> <li>Complies with I2C bus protocol specifications (100 kHz/400 kHz)</li> </ul>                               |  |
|                                                                       | <ul> <li>Multi-master mode is not supported</li> </ul>                                                            |  |
|                                                                       | <ul> <li>Compliant with USB 2.0 specification (slave only), with transmission</li> </ul>                          |  |
|                                                                       | rates up to 480 Mbps                                                                                              |  |
| USB Interface                                                         | <ul> <li>Used for AT command communication, data transmission, software debugging and firmware upgrade</li> </ul> |  |
|                                                                       | <ul> <li>Supports USB serial driver for Windows 7/8/8.1/10/11, Linux 2.6–5.15</li> </ul>                          |  |
|                                                                       | and Android $4.x-12.x$ systems                                                                                    |  |
| SDIO Interface                                                        | Supports SD 3.0 protocol                                                                                          |  |
|                                                                       | Main UART:                                                                                                        |  |
|                                                                       | <ul> <li>Used for AT command communication and data transmission</li> </ul>                                       |  |
|                                                                       | <ul> <li>Baud rate: 115200 bps by default, Max. 921600 bps</li> </ul>                                             |  |
| UART Interfaces                                                       | <ul> <li>Supports RTS and CTS hardware flow control</li> </ul>                                                    |  |
| OAITT IIItenaces                                                      | Debug UART:                                                                                                       |  |
|                                                                       | <ul> <li>Used for log output</li> </ul>                                                                           |  |
|                                                                       | <ul> <li>Baud rate: 115200 bps</li> </ul>                                                                         |  |
|                                                                       | <ul> <li>NET_MODE indicates network registration status</li> </ul>                                                |  |
| Network Indication                                                    | <ul> <li>NET_STATUS indicates network operation status</li> </ul>                                                 |  |
| AT Commands Compliant with 3GPP TS 27.007, 3GPP TS 27.005 and Quectel |                                                                                                                   |  |



| enhanced AT commands       |                                                                                |  |
|----------------------------|--------------------------------------------------------------------------------|--|
| Antenna Interface          | Main antenna interface (ANT_MAIN)                                              |  |
| Antenna intenace           | <ul> <li>50 Ω impedance</li> </ul>                                             |  |
|                            | • GSM850: Class 4 (33 dBm ±2 dB)                                               |  |
|                            | • EGSM900: Class 4 (33 dBm ±2 dB)                                              |  |
|                            | <ul> <li>DCS1800: Class 1 (30 dBm ±2 dB)</li> </ul>                            |  |
|                            | <ul> <li>PCS1900: Class 1 (30 dBm ±2 dB)</li> </ul>                            |  |
| Transmitting Power         | <ul> <li>GSM850 8-PSK: Class E2 (27 dBm ±3 dB)</li> </ul>                      |  |
|                            | <ul> <li>EGSM900 8-PSK: Class E2 (27 dBm ±3 dB)</li> </ul>                     |  |
|                            | <ul> <li>DCS1800 8-PSK: Class E2 (26 dBm ±3 dB)</li> </ul>                     |  |
|                            | <ul> <li>PCS1900 8-PSK: Class E2 (26 dBm ±3 dB)</li> </ul>                     |  |
|                            | • WCDMA: Class 3 (24 dBm +1/-3 dB)                                             |  |
|                            | • Supports 3GPP Rel-7 HSPA+, HSDPA, HSUPA and WCDMA                            |  |
|                            | <ul> <li>Supports QPSK, 16QAM and 64QAM modulation</li> </ul>                  |  |
| UMTS Features              | • HSPA+: Max. 21 Mbps (DL)                                                     |  |
|                            | HSUPA: Max. 5.76 Mbps (UL)                                                     |  |
|                            | • WCDMA: Max. 384 kbps (DL)/384 kbps (UL)                                      |  |
|                            | GPRS:                                                                          |  |
|                            | <ul> <li>Supports GPRS multi-slot class 12</li> </ul>                          |  |
|                            | <ul> <li>Coding scheme: CS 1–4</li> </ul>                                      |  |
|                            | <ul> <li>Max. 85.6 kbps (DL)/85.6 kbps (UL)</li> </ul>                         |  |
|                            | EDGE:                                                                          |  |
| GSM Features               | <ul> <li>Supports EDGE multi-slot class 12</li> </ul>                          |  |
|                            | <ul> <li>Supports GMSK and 8-PSK for different MCS (Modulation</li> </ul>      |  |
|                            | and Coding Scheme)                                                             |  |
|                            | <ul> <li>Downlink coding schemes: MCS 1–9</li> </ul>                           |  |
|                            | <ul> <li>Uplink coding schemes: MCS 1–9</li> </ul>                             |  |
|                            | <ul> <li>Max. 236.8 kbps (DL)/236.8 kbps (UL)</li> </ul>                       |  |
|                            | Supports TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/HTTPS                         |  |
| Internet Protocol Features | /FTPS/SSL/FILE/MQTT/MMS/SMTP/SMTPS protocols                                   |  |
|                            | <ul> <li>Supports PAP and CHAP for PPP connections</li> </ul>                  |  |
|                            | <ul> <li>Operating temperature range <sup>1</sup>: -35 °C to +75 °C</li> </ul> |  |
| Temperature Range          | <ul> <li>Extended temperature range <sup>2</sup>: -40 °C to +85 °C</li> </ul>  |  |
|                            | <ul> <li>Storage temperature range: -40 °C to +90 °C</li> </ul>                |  |
| Firmware Upgrade           | Use USB interface or DFOTA to upgrade                                          |  |
| RoHS                       | All hardware components are fully compliant with EU RoHS directive             |  |
|                            |                                                                                |  |

<sup>&</sup>lt;sup>1</sup> Within the operating temperature range, the module meets 3GPP specifications.

 $<sup>^2</sup>$  Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P<sub>out</sub>, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

# 2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband
- DDR + NAND flash
- Radio frequency
- Peripheral interface

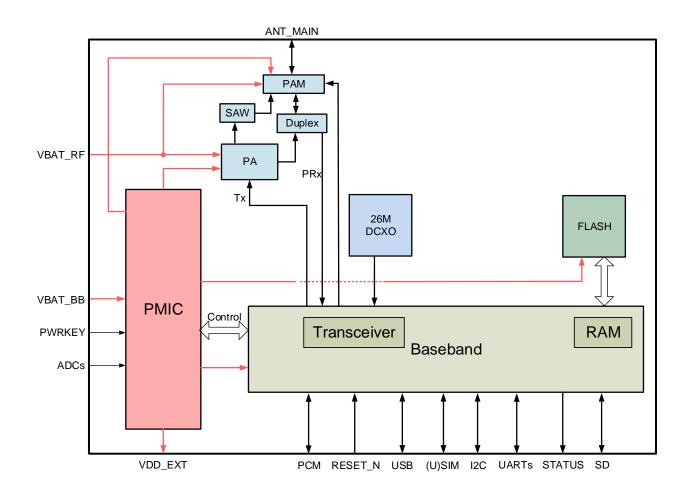



Figure 1: Functional Diagram

# 2.4. Pin Assignment

QUECTEL

Reserved Reserved MIN\_TXD MINICTS AIN\_DCE ERVED MIN RX MIN\_R 0 /AKEUP\_IN AP\_READY RESERVED RESERVED RESERVED w\_disable# GND GND GND GND GND GND RESERVED RESERVED NET\_MODE NET\_STATUS RESERVED GND RESERVED RESERVED GND GND GND GND GND GND RESERVED GND RESERVED RESERVED RESERVE RESERVED RESERVED GND GND GND GND GND RESERVED RESERVED RESERVED ESERVED RESERVED DBG\_RXD RESERVED RESERVED DBG\_TXD RESERVED RESERVED GND GND GND GND GND GND USM\_DET RESERVED RESERVED RESERVED JSM DATA RESERVED RESERVED RESERVED GND RESERVED RESERVED RESERVED RESERVED REERVED Be Boot ဂန္ဂ WRKE 8 ANT Power Pins Debug UART PCM RESERVED Signal Pins Main UART 12C ADC GND (U)SIM SD USB

The following figure illustrates the pin assignment of the module.



NOTE

- 1. USB\_BOOT cannot be pulled up before startup.
- 2. Other unused and RESERVED pins are kept open, and all GND pins are connected to the ground network.

# 2.5. Pin Description

The following table shows the DC characteristics and pin descriptions.

#### Table 5: I/O Parameters Definition

| Туре | Description          |
|------|----------------------|
| AI   | Analog Input         |
| AIO  | Analog Input/Output  |
| DI   | Digital Input        |
| DIO  | Digital Input/Output |
| DO   | Digital Output       |
| OD   | Open Drain           |
| PI   | Power Input          |
| PO   | Power Output         |

#### Table 6: Pin Description

| Power Supply |            |     |                                                          |                                            |                                                                                                     |
|--------------|------------|-----|----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Pin Name     | Pin<br>No. | I/O | Description                                              | DC<br>Characteristics                      | Comment                                                                                             |
| VBAT_BB      | 59, 60     | ΡI  | Power supply for the module's baseband part Vmax = 4.5 V |                                            | It should at least<br>be provided with a<br>sufficient current<br>of 0.8 A.                         |
| VBAT_RF      | 57, 58     | ΡI  | Power supply for the module's RF part                    | - Vmin = 3.4 V<br>Vnom = 3.8 V             | It should at least<br>be provided with a<br>sufficient current<br>of 2.0 A.                         |
| VDD_EXT      | 7          | PO  | Provide 1.8 V for external circuit                       | Vnom = 1.8 V<br>I <sub>o</sub> max = 50 mA | It can provide a<br>pull-up power<br>supply to the<br>external GPIO.<br>If unused, keep it<br>open. |



| Turn on/off        |                  |     |                                                       |                                               |                                                                                                         |  |  |
|--------------------|------------------|-----|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Pin Name           | Pin<br>No.       | I/O | Description                                           | DC<br>Characteristics                         | Comment                                                                                                 |  |  |
| PWRKEY             | 21               | DI  | Turn on/off the module                                | _                                             | VBAT power<br>domain.<br>Active low.                                                                    |  |  |
| RESET_N            | 20               | DI  | Reset the module                                      | V <sub>IL</sub> max = 0.5 V                   | 1.8 V power<br>domain.<br>Active low after<br>module startup.                                           |  |  |
| Indication Interfa | ces              |     |                                                       |                                               |                                                                                                         |  |  |
| Pin Name           | Pin<br>No.       | I/O | Description                                           | DC<br>Characteristics                         | Comment                                                                                                 |  |  |
| NET_MODE           | 5                | DO  | Indicate the module's<br>network registration<br>mode | 1.8 V                                         | If unused, keep<br>them open.                                                                           |  |  |
| NET_STATUS         | 6                | DO  | Indicate the module's<br>network activity status      |                                               |                                                                                                         |  |  |
| STATUS             | 61               | OD  | Indicate the module's operation status                |                                               | External pull-up is<br>required.<br>If unused, keep it<br>open.                                         |  |  |
| USB Interface      |                  |     |                                                       |                                               |                                                                                                         |  |  |
| Pin Name           | Pin<br>No.       | I/O | Description                                           | DC<br>Characteristics                         | Comment                                                                                                 |  |  |
| USB_VBUS           | 71               | AI  | USB connection detect                                 | Vmax = 5.25 V<br>Vmin = 3.0 V<br>Vnom = 5.0 V | Typical value is<br>5.0 V.<br>If unused, keep it<br>open.                                               |  |  |
| USB_DP             | 69               | AIO | USB differential data (+)                             |                                               | 90 $\Omega$ differential                                                                                |  |  |
| USB_DM             | 70               | AIO | USB differential data (-)                             |                                               | <ul> <li>impedance. USB</li> <li>2.0 compliant.</li> <li>If unused, keep</li> <li>them open.</li> </ul> |  |  |
| (U)SIM Interface   | (U)SIM Interface |     |                                                       |                                               |                                                                                                         |  |  |
| Pin Name           | Pin<br>No.       | I/O | Description                                           | DC<br>Characteristics                         | Comment                                                                                                 |  |  |
| USIM_GND           | 10               |     | Specified ground for (U)SIM card                      |                                               | It is connected to<br>(U)SIM card<br>connector.                                                         |  |  |

| USIM_VDD          | 14         | PO  | O (U)SIM card power supply        | 1.8/3.0 V             | Either 1.8 V or<br>3.0 V (U)SIM card<br>is supported and<br>can be identified<br>automatically by<br>the module. |
|-------------------|------------|-----|-----------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|
| USIM_DATA         | 15         | DIO | (U)SIM card data                  | -                     |                                                                                                                  |
| USIM_CLK          | 16         | DO  | (U)SIM card clock                 | -                     |                                                                                                                  |
| USIM_RST          | 17         | DO  | (U)SIM card reset                 | -                     |                                                                                                                  |
| USIM_DET          | 13         | DI  | (U)SIM card hot-plug<br>detect    | 1.8 V                 | lf unused, keep it open.                                                                                         |
| SD Card Interface |            |     |                                   |                       |                                                                                                                  |
| Pin Name          | Pin<br>No. | I/O | Description                       | DC<br>Characteristics | Comment                                                                                                          |
| SD_SDIO_CLK       | 32         | DO  | SD card SDIO clock                |                       |                                                                                                                  |
| SD_SDIO_CMD       | 33         | DIO | SD card SDIO command              | <br>1.8/2.8 V         | If unused, keep<br>them open.                                                                                    |
| SD_SDIO_DATA0     | 31         | DIO | SD card SDIO data bit 0           |                       |                                                                                                                  |
| SD_SDIO_DATA1     | 30         | DIO | SD card SDIO data bit 1           |                       |                                                                                                                  |
| SD_SDIO_DATA2     | 29         | DIO | SD card SDIO data bit 2           |                       |                                                                                                                  |
| SD_SDIO_DATA3     | 28         | DIO | SD card SDIO data bit 3           | -                     |                                                                                                                  |
| SD_SDIO_VDD       | 34         | PO  | SD card SDIO power supply         | -                     |                                                                                                                  |
| SD_DET*           | 23         | DI  | SD card detect                    | 1.8 V                 | lf unused, keep it open.                                                                                         |
| Main UART Interfa | се         |     |                                   |                       |                                                                                                                  |
| Pin Name          | Pin<br>No. | I/O | Description                       | DC<br>Characteristics | Comment                                                                                                          |
| MAIN_RI           | 62         | DO  | Main UART ring indication         |                       | lf unused, keep                                                                                                  |
| MAIN_DCD          | 63         | DO  | Main UART data carrier detect     |                       | them open.                                                                                                       |
| MAIN_CTS          | 64         | DO  | DTE clear to send signal from DCE | 1.8 V                 | Connect to DTE's<br>CTS.<br>If unused, keep it<br>open.                                                          |
| MAIN_RTS          | 65         | DI  | DTE request to send signal to DCE | -                     | Connect to DTE's RTS.                                                                                            |

|                 |            |     |                               |                       | lf unused, keep it open.                                                                                                                         |
|-----------------|------------|-----|-------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| MAIN_DTR        | 66         | DI  | Main UART data terminal ready | -                     | If unused loss                                                                                                                                   |
| MAIN_RXD        | 68         | DI  | Main UART receive             | _                     | If unused, keep<br>them open.                                                                                                                    |
| MAIN_TXD        | 67         | DO  | Main UART transmit            | Main UART transmit    |                                                                                                                                                  |
| Debug UART Int  | erface     |     |                               |                       |                                                                                                                                                  |
| Pin Name        | Pin<br>No. | I/O | Description                   | DC<br>Characteristics | Comment                                                                                                                                          |
| DBG_RXD         | 11         | DI  | Debug UART receive            | - 1.8 V               | lf unused, keep                                                                                                                                  |
| DBG_TXD         | 12         | DO  | Debug UART transmit           | 1.0 V                 | them open.                                                                                                                                       |
| I2C Interface   |            |     |                               |                       |                                                                                                                                                  |
| Pin Name        | Pin<br>No. | I/O | Description                   | DC<br>Characteristics | Comment                                                                                                                                          |
| I2C_SCL         | 41         | OD  | I2C serial clock              | I2C serial clock      |                                                                                                                                                  |
| I2C_SDA         | 42         | OD  | I2C serial data               |                       | <ul> <li>Codec.</li> <li>An external 1.8 V</li> <li>pull-up resistor is</li> <li>needed.</li> <li>If unused, keep</li> <li>them open.</li> </ul> |
| PCM Interface   |            |     |                               |                       |                                                                                                                                                  |
| Pin Name        | Pin<br>No. | I/O | Description                   | DC<br>Characteristics | Comment                                                                                                                                          |
| PCM_SYNC        | 26         | DIO | PCM data frame sync           |                       | In master mode, it is in output state.                                                                                                           |
| PCM_CLK         | 27         | DIO | PCM clock                     | PCM clock             |                                                                                                                                                  |
| PCM_DIN         | 24         | DI  | PCM data input                |                       | lf unused, keep                                                                                                                                  |
| PCM_DOUT        | 25         | DO  | PCM data output               | -                     | them open.                                                                                                                                       |
| RF Antenna Inte | rface      |     |                               |                       |                                                                                                                                                  |
|                 | Pin        |     |                               | DC                    |                                                                                                                                                  |

| Pin Name | Pin<br>No. | I/O | Description            | DC<br>Characteristics | Comment                |
|----------|------------|-----|------------------------|-----------------------|------------------------|
| ANT_MAIN | 49         | AIO | Main antenna interface |                       | 50 $\Omega$ impedance. |



| ADC Interfaces       |            |                                                 |                                                          |                       |                                                                                                                                         |  |  |
|----------------------|------------|-------------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pin Name             | Pin<br>No. | I/O                                             | Description                                              | DC<br>Characteristics | Comment                                                                                                                                 |  |  |
| ADC0                 | 45         | AI                                              | General-purpose ADC                                      | Voltage Range:        | lf unused, keep                                                                                                                         |  |  |
| ADC1                 | 44         | AI                                              | interface                                                | 0 V–VBAT_BB           | them open.                                                                                                                              |  |  |
| Other Interfaces     |            |                                                 |                                                          |                       |                                                                                                                                         |  |  |
| Pin Name             | Pin<br>No. | I/O                                             | Description                                              | DC<br>Characteristics | Comment                                                                                                                                 |  |  |
| USB_BOOT             | 115        | DI                                              | Forces the module to<br>enter emergency<br>download mode | _                     | Active High.<br>It is recommended<br>to reserve test<br>points.                                                                         |  |  |
| WAKEUP_IN*           | 1          | DI                                              | Wake up the module                                       |                       | lf unused, keep                                                                                                                         |  |  |
| AP_READY             | 2          | DI                                              | Application processor<br>ready                           | - 4 0 \/              | them open.                                                                                                                              |  |  |
| W_DISABLE#           | 4          | DI                                              | Airplane mode control                                    | <sup>–</sup> 1.8 V    | Pull-up by default.<br>Active low.<br>(Driving it low can<br>make the module<br>enter airplane<br>mode.)<br>If unused, keep it<br>open. |  |  |
| GND                  |            |                                                 |                                                          |                       |                                                                                                                                         |  |  |
| Pin Name             | Pin No     | •                                               |                                                          |                       |                                                                                                                                         |  |  |
| GND                  | 8, 9, 19   | 8, 9, 19, 22, 36, 46, 48, 50–54, 56, 72, 85–112 |                                                          |                       |                                                                                                                                         |  |  |
| <b>RESERVED</b> Pins |            |                                                 |                                                          |                       |                                                                                                                                         |  |  |
| Pin Name             | Pin No     | Pin No. Comment                                 |                                                          |                       |                                                                                                                                         |  |  |
| RESERVED             | 3, 18, 3   | 5, 37–4                                         | 0, 43, 47, 55, 73–84,113, 1                              | 14, 116–144           | Keep them open.                                                                                                                         |  |  |
|                      |            |                                                 |                                                          |                       |                                                                                                                                         |  |  |

# 2.6. EVB Kit

To help you develop applications with the module, Quectel supplies an evaluation board (UMTS & LTE EVB) with accessories to control or test the module. For more details, see *document [1]*.

# **3** Operating Characteristics

# 3.1. Operating Modes

The table below outlines operating modes of the module.

#### **Table 7: Overview of Operating Modes**

| Mode                                             | Details                                                                                                                                                                 |                                                                                                                    |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Idle<br>Full Functionality<br>Mode<br>Voice/Data | Idle                                                                                                                                                                    | Software is active. The module is registered on the network and ready to send and receive data.                    |  |  |
|                                                  | Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transmission rate.                                            |                                                                                                                    |  |  |
| Minimum                                          | AT+CFUN=0 can set the module to a minimum functionality mode. In this case,                                                                                             |                                                                                                                    |  |  |
| Functionality Mode                               | both RF funct                                                                                                                                                           | ion and (U)SIM card will be invalid.                                                                               |  |  |
| Airplane Mode                                    |                                                                                                                                                                         | <b>AT+CFUN=4</b> or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid. |  |  |
| Sleep Mode                                       | In this mode, power consumption of the module will be reduced to the minimal level. The module can still receive paging, SMS, voice call and TCP/UDP data from network. |                                                                                                                    |  |  |
| Power Down Mode                                  | In this mode, the VBAT power supply is constantly turned on and the software stops working.                                                                             |                                                                                                                    |  |  |

#### NOTE

More information about the AT command, see *document* [2].

### 3.2. Sleep Mode

In sleep mode, the module can reduce power consumption to a very low level, the following section describes power saving procedures of the module.

#### 3.2.1. UART Application

If the host communicates with module via UART interface, the following preconditions should be met to enable the module to enter sleep mode.

- Execute **AT+QSCLK=1** to enable sleep mode.
- Drive MAIN\_DTR to a high level.
- Ensure USB\_VBUS is held at a low level or keep it open.

The following figure shows the connection between the module and the host.

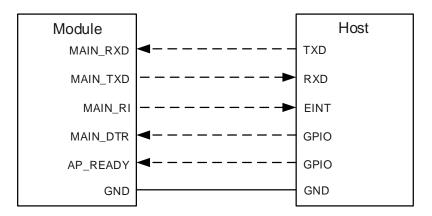
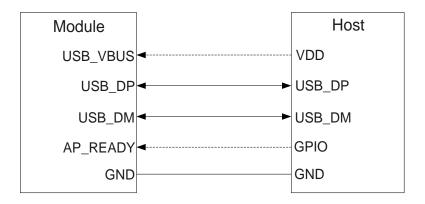



Figure 3: Sleep Mode Application via UART

- Driving MAIN\_DTR low by host will wake up the module.
- When the module has a URC to report, the URC will trigger the behavior of MAIN\_RI pin. Please refer to *Chapter 4.8.3* for details about MAIN\_RI behavior.


#### 3.2.2. USB Application with USB Remote Wakeup Function

If the host supports USB Suspend/Resume and remote wakeup functions, the following three preconditions must be met to let the module enter sleep mode.

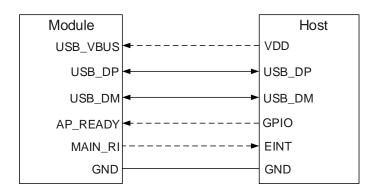
- Execute **AT+QSCLK=1** to enable the sleep mode.
- Ensure the MAIN\_DTR is kept at high level or kept open.



• The host's USB bus, which is connected with the module's USB interface, enters Suspend state. The following figure shows the connection between the module and the host.



#### Figure 4: Sleep Mode Application with USB Remote Wakeup


- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will send remote wakeup signals via USB bus to wake up the host.

#### 3.2.3. USB Application with USB Suspend/Resume and MAIN\_RI Function

If the host supports USB Suspend/Resume, but does not support remote wakeup function, the MAIN\_RI signal is needed to wake up the host. There are three preconditions to let the module enter sleep mode.

- Execute **AT+QSCLK=1** to enable the sleep mode.
- Ensure the MAIN\_DTR is held at high level or kept open.
- The host's USB bus, which is connected with the module's USB interface, enters Suspend state.

The following figure shows the connection between the module and the host.





# QUECTEL

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the URC will trigger the behavior of MAIN\_RI pin. Please refer to *Chapter 4.8.3* for details about MAIN\_RI behavior.

# 3.2.4. USB Application without USB Suspend Function

If the host does not support USB Suspend function, please disconnect USB\_VBUS with additional control circuit to let the module enter into sleep mode.

- Execute AT+QSCLK=1 to enable the sleep mode.
- Ensure the MAIN\_DTR is held at high level or kept open.
- Disconnect USB\_VBUS.

The following figure shows the connection between the module and the host.

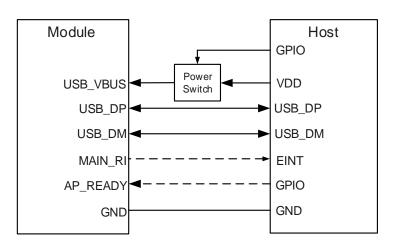



Figure 6: Sleep Mode Application without Suspend Function

Turn on the power switch and supply power to USB\_VBUS will wake up the module.



- 1. Please pay attention to the level match shown in dotted line between the module and the host in all figures illustrated in *Chapter 3.2*.
- 2. The AP\_READY shown in all figures in *Chapter 3.2*, is set to high level by default and active low.

## 3.3. Airplane Mode

When the module enters into airplane mode, the RF function will be disabled, and all AT commands related to it will be inaccessible. This mode can be set via the following ways.

#### Hardware:

The W\_DISABLE# pin is pulled up by default. Its control function for airplane mode is disabled by default, and **AT+QCFG="airplanecontrol"**,1 can be used to enable the function. Driving the pin low can make the module enter airplane mode.

#### Software:

AT+CFUN=<fun> provides choices of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode (Both (U)SIM and RF functions are disabled.).
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode (RF function is disabled.).

#### 3.4. Power Supply

#### 3.4.1. Power Supply pins

The module provides four VBAT pins dedicated to the connection with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT\_RF pins for module's RF part
- Two VBAT\_BB pins for module's baseband part

The following table shows the details of power supply and GND pins.

| Pin Name | Pin No. | I/O | Description                                 | Comment                                                                  |
|----------|---------|-----|---------------------------------------------|--------------------------------------------------------------------------|
| VBAT_BB  | 59, 60  | PI  | Power supply for the module's baseband part | It should at least be<br>provided with a sufficient<br>current of 0.8 A. |
| VBAT_RF  | 57, 58  | ΡI  | Power supply for the module's RF part       | It should at least be<br>provided with a sufficient<br>current of 2.0 A. |

#### **Table 8: Pin Definition of Power Supply**

| VDD_EXT | 7 | PO | Provide 1.8 V for external circuit | It can provide a pull-up<br>power supply to the<br>external GPIO.<br>If unused, keep it open. |
|---------|---|----|------------------------------------|-----------------------------------------------------------------------------------------------|
|---------|---|----|------------------------------------|-----------------------------------------------------------------------------------------------|

#### 3.4.2. Reference Design for Power Supply

The performance of the module largely depends on the power source. The power supply of the module should be able to provide a sufficient current of 2.8 A at least. If the voltage drops between input and output is not too high, it is suggested that an LDO should be used. If there is a big voltage difference between input and the desired output VBAT, a buck converter is preferred as the power supply.

The following figure shows a reference design for +5 V input power source. The design uses the LDO MIC29302WU from Micrel company. The typical output of the power supply is about 3.8 V and the maximum load current is 3.0 A.

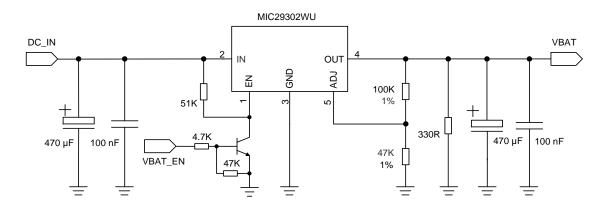



Figure 7: Reference Design of Power Supply

#### NOTE

It is recommended to design switch control for power supply.

#### 3.4.3. Requirements for Voltage Stability

The power supply range of the module is from 3.4 V to 4.5 V. Please make sure the input voltage will never drop below 3.4 V.

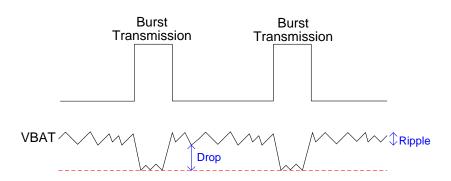



Figure 8: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100  $\mu$ F with low ESR (ESR = 0.7  $\Omega$ ) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT\_BB and VBAT\_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star configuration. The width of VBAT\_BB trace should be no less than 1 mm; and the width of VBAT\_RF trace should be no less than 2 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, to ensure the stability of power source, it is suggested that a TVS diode of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used. The following figure shows the star configuration of the power supply.

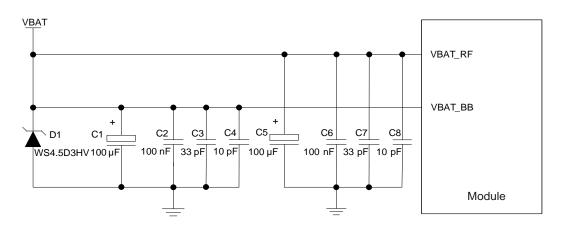



Figure 9: Star Structure of the Power Supply

## 3.5. Turn On

#### 3.5.1. Turn on the Module with PWRKEY

#### Table 9: Pin Definition of PWRKEY

| Pin Name | Pin No. | I/O | Description            | Comment            |
|----------|---------|-----|------------------------|--------------------|
| PWRKEY   | 21      | DI  | Turn on/off the module | VBAT power domain. |
|          | 21      | DI  |                        | Active low.        |

When the module is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

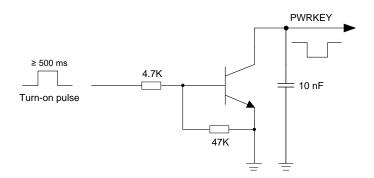



Figure 10: Turning on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When pressing the button, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

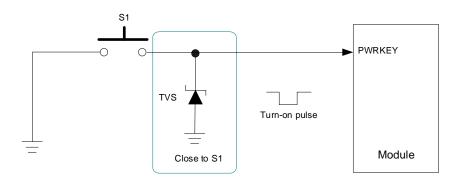



Figure 11: Turning on the Module with a Button

The power up scenario is illustrated in the following figure.

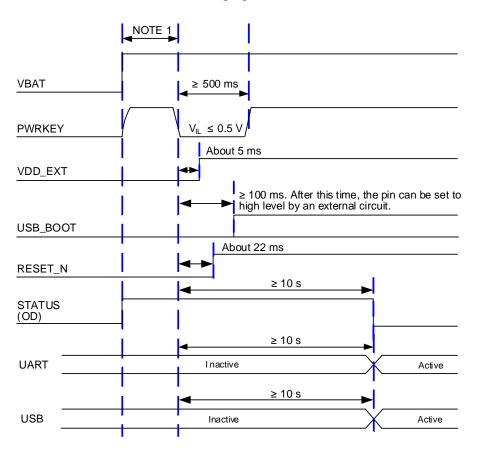



Figure 12: Power-up Timing

#### NOTE

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 4.7 kΩ resistor if module needs to be powered on automatically and shutdown is not needed.

## 3.6. Turn Off

#### 3.6.1. Turn off the Module with PWRKEY

Driving the PWRKEY low for at least 650 ms, then the module will execute power-down procedure after the PWRKEY is released. The timing of turning off the module is illustrated in the following figure.

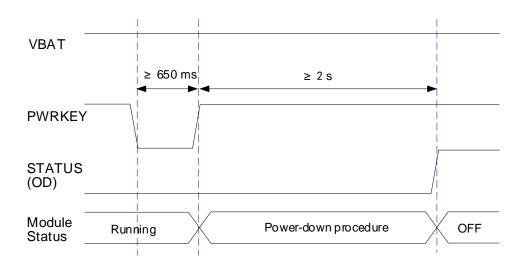



Figure 13: Timing of Turning off Module

#### 3.6.2. Turn off the Module with AT Command

It is safe to use **AT+QPOWD** to turn off the module, which is equal to turn off the module via PWRKEY Pin. See *document* [2] for details about **AT+QPOWD**.

#### NOTE

- 1. To avoid damaging internal flash, do not switch off the power supply when the module works normally. Only after shutting down the module with PWRKEY or AT command can you cut off the power supply.
- 2. When turning off module with the AT command, please keep PWRKEY at high level after the execution of the command. Otherwise, the module will be turned on again after successfully turn-off.

## 3.7. Reset

The module can be reset by driving the RESET\_N low for at least 300 ms and then releasing it. The RESET\_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

#### Table 10: Pin Definition of RESET

| Pin Name | Pin No. | I/O | Description      | Comment                                                    |
|----------|---------|-----|------------------|------------------------------------------------------------|
| RESET_N  | 20      | DI  | Reset the module | 1.8 V power domain.<br>Active low after module<br>startup. |

The recommended circuit is equal to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET\_N.

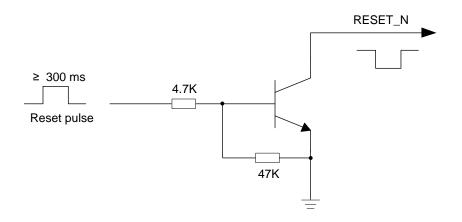
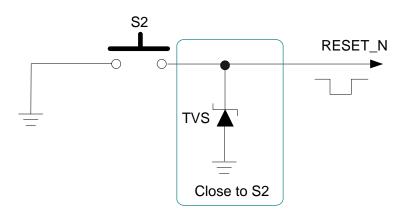




Figure 14: Reference Circuit of RESET\_N with Driving Circuit







The timing of resetting module is illustrated in the following figure.

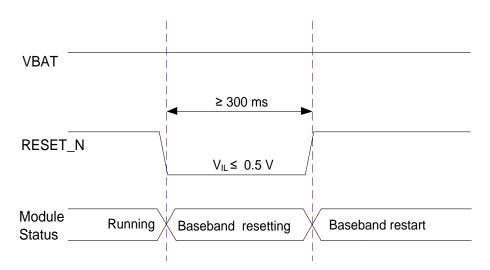



Figure 16: Timing of Resetting Module

NOTE

- 1. Please ensure that there is no large capacitance with the maximum value exceeding 10 nF on PWRKEY and RESET\_N pins.
- 2. RESET\_N only resets the internal baseband chip of the module and does not reset the power management chip.

# **4** Application Interfaces

# 4.1. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports full-speed (12 Mbps) and high-speed (480 Mbps) modes. The USB interface can only serve as a slave device and is used for AT command communication, data transmission, software debugging and firmware upgrade.

Pin definition of the USB interface is here as follows:

| Pin Name | Pin No. | I/O | Description               | Comment                                                                    |  |
|----------|---------|-----|---------------------------|----------------------------------------------------------------------------|--|
| USB_VBUS | 71      | AI  | USB connection detect     | Typical value is 5.0 V.<br>If unused, keep it open.                        |  |
| USB_DP   | 69      | AIO | USB differential data (+) | 90 $\Omega$ differential impedance.                                        |  |
| USB_DM   | 70      | AIO | USB differential data (-) | <ul> <li>USB 2.0 compliant.</li> <li>If unused, keep them open.</li> </ul> |  |

#### Table 11: Pin Definition of USB Interface

It is recommended to reserve test points for debugging and firmware upgrade in your designs. The following figure shows a reference circuit of USB interface.

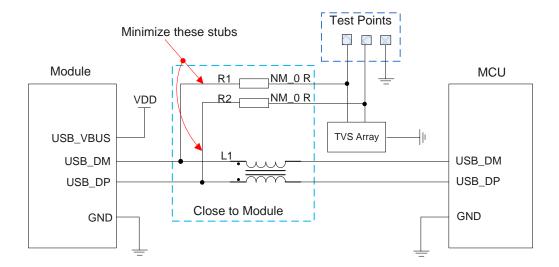



Figure 17: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and your MCU to suppress EMI spurious transmission. Meanwhile, the 0  $\Omega$  resistors (R1 and R2) should be added in series between the module and the test points to facilitate debugging, and the resistors are not mounted by default. To ensure the integrity of USB data line signal, L1, R1 and R2 components must be placed close to the module, and R1 and R2 should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when designing the USB interface to meet USB specifications.

- It is important to route the USB signal traces as differential pairs with ground surrounded. The impedance of USB differential trace is 90 Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices, high speed signal traces and RF signal traces. It is important to route the USB differential traces in inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below.
- Junction capacitance of the ESD protection device might cause influences on USB data lines, so please pay attention to the selection of the device. Typically, the stray capacitance should be less than 2 pF for USB.
- If possible, reserve a 0 Ω resistor on USB\_DP and USB\_DM lines respectively.

For more details about the USB specifications, please visit <u>http://www.usb.org/home</u>.

# 4.2. USB\_BOOT Interface

The module provides a USB\_BOOT pin. You can pull USB\_BOOT up to VDD\_EXT before turning on the module, thus the module will enter emergency download mode when turned on. In this mode, the module supports firmware upgrade over USB interface.

#### Table 12: Pin Definition of USB\_BOOT Interface

| Pin Name | Pin No. | I/O | Description                              | Comment                                                                                                      |
|----------|---------|-----|------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| USB_BOOT | 115     | DI  | Forces the module to enter download mode | <ul><li>1.8 V power domain.</li><li>Active High.</li><li>It is recommended to reserve test points.</li></ul> |

The following figure shows a reference circuit of USB\_BOOT interface.

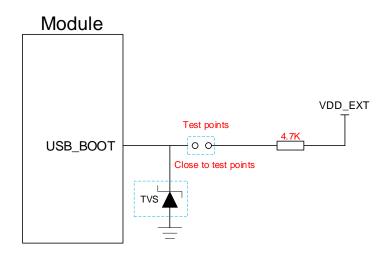
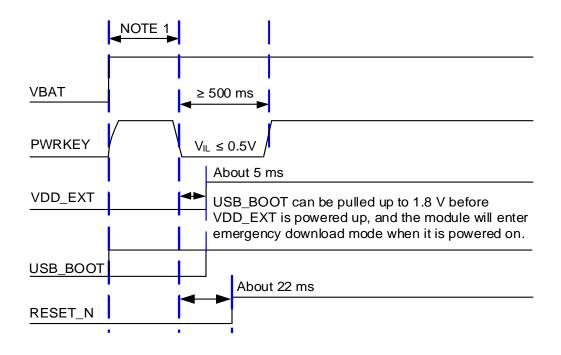




Figure 18: Reference Circuit of USB\_BOOT Interface



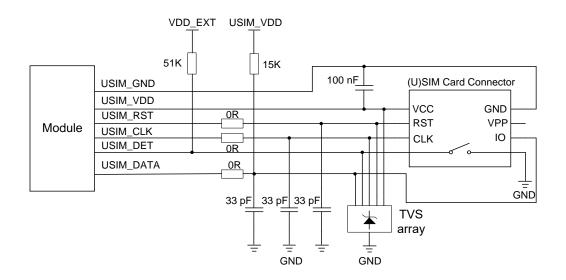
## Figure 19: Timing Sequence for Entering Emergency Download Mode

# NOTE

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- When using MCU to control module to enter the emergency download mode, please follow the above timing sequence. It is not recommended to pull up USB\_BOOT to 1.8 V before powering up VBAT. Directly connect the test points as shown in *Figure 18* can manually force the module into download mode.
- 3. USB\_BOOT cannot be pulled up to a high level before startup.

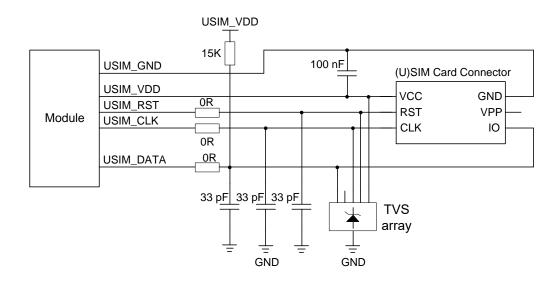
# 4.3. (U)SIM Interface

The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8 V and 3.0 V (U)SIM cards are supported.


| Pin Name | Pin No. | I/O | Description                 | Comment                   |
|----------|---------|-----|-----------------------------|---------------------------|
| USIM GND | 10      |     | Specified ground for (U)SIM | It is connected to (U)SIM |
|          | 10      |     | card                        | card connector.           |

## Table 13: Pin Definition of (U)SIM Interface

| USIM_VDD  | 14 | PO  | (U)SIM card power supply    |                                                                                |
|-----------|----|-----|-----------------------------|--------------------------------------------------------------------------------|
| USIM_DATA | 15 | DIO | (U)SIM card data            | <ul> <li>Either 1.8 V or 3.0 V (U)SIM<br/>card is supported and can</li> </ul> |
| USIM_CLK  | 16 | DO  | (U)SIM card clock           | be identified automatically by the module.                                     |
| USIM_RST  | 17 | DO  | (U)SIM card reset           | - by the module.                                                               |
| USIM_DET  | 13 | DI  | (U)SIM card hot-plug detect | 1.8 V power domain.<br>If unused, keep it open.                                |


The module supports (U)SIM card hot-plug via the USIM\_DET pin, the function supports low-level and high-level detections. It is disabled by default, and can be configured via **AT+QSIMDET**. See **document [2]** for details about the command.

The reference circuit of the 8-pin (U)SIM interface is as follows.



## Figure 20: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM\_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.



# Figure 21: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, please follow the criteria below in (U)SIM circuit design.

- Keep (U)SIM card connector as close as possible to the module. Keep the trace length as less than 200 mm as possible.
- Keep (U)SIM card signal traces away from RF and VCC traces.
- The maximum value of bypass capacitor of USIM\_VDD does not exceed 1 μF.
- Ensure the ground between the module and the (U)SIM card connector is short and wide. Keep the trace width of ground and USIM\_VDD no less than 0.5 mm to maintain the same electric potential.
- To avoid cross-talk between USIM\_DATA and USIM\_CLK, keep them away from each other and shield them with ground surrounded.
- To offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 15 pF. The 0 Ω resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors on the USIM\_DATA, USIM\_CLK and USIM\_RST trances are used for filtering interference. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM\_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

# 4.4. PCM and I2C Interfaces

The module provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the primary mode (short frame synchronization) and the module works as both master and slave\*.

The module supports one I2C interface which can only be used as primary devices in applications related to I2C interfaces, and multi-master mode is not supported.

| Pin Name | Pin No. | I/O | Description         | Comment                                                                       |  |
|----------|---------|-----|---------------------|-------------------------------------------------------------------------------|--|
| PCM_SYNC | 26      | DIO | PCM data frame sync | <ul><li>1.8 V power domain.</li><li>In master mode, it is in output</li></ul> |  |
| PCM_CLK  | 27      | DIO | PCM clock           | state. In slave mode*, it is in<br>input state.<br>If unused, keep them open. |  |
| PCM_DIN  | 24      | DI  | PCM data input      | 1.8 V power domain.                                                           |  |
| PCM_DOUT | 25      | DO  | PCM data output     | If unused, keep them open.                                                    |  |

## Table 14: Pin Definition of PCM Interface

## Table 15: Pin Definition of I2C Interface

| Pin Name | Pin No. | I/O | Description      | Comment                                               |
|----------|---------|-----|------------------|-------------------------------------------------------|
| I2C_SCL  | 41      | OD  | I2C serial clock | Used for external Codec.<br>An external 1.8 V pull-up |
| I2C_SDA  | 42      | OD  | I2C serial data  | resistor is needed.<br>If unused, keep them<br>open.  |

The module supports a 16-bit linear encoding format. The following figure shows the sequence diagram of short frame mode. (PCM\_SYNC = 8 kHz, PCM\_CLK = 2048 kHz).

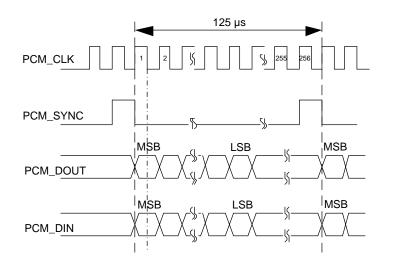
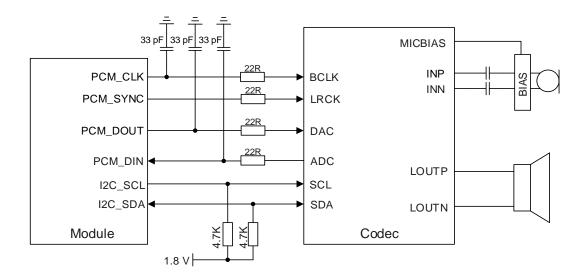




Figure 22: Timing Sequence for Short frame mode

In short frame mode, the data is sampled on the falling edge of the PCM\_CLK and transmitted on the rising edge. The PCM\_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz, 2048 kHz PCM\_CLK at 8 kHz PCM\_SYNC, and also supports 4069 kHz PCM\_CLK at 16 kHz PCM\_SYNC.

Clock and mode can be configured by AT command, and the default configuration is short frame synchronization format with 2048 kHz PCM\_CLK and 8 kHz PCM\_SYNC. See *document* [2] for details.

The following is a reference design for the PCM and I2C interfaces with external Codec chip







NOTE

It is recommended to reserve the RC (R = 22  $\Omega$ , C = 33 pF) circuit on the PCM signal trace and the capacitor should be placed close to the module, especially on PCM\_CLK.

# 4.5. UART Interfaces

The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features.

- The main UART interface supports 4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps baud rates, and the baud rate is 115200 bps by default. This interface is used for data transmission and AT command communication. Also, it supports RTS and CTS hardware flow control.
- The debug UART interface supports 115200 bps baud rate. It is used for the output of partial logs.

| Pin Name | Pin No. | I/O | Description                       | Comment                                                                  |
|----------|---------|-----|-----------------------------------|--------------------------------------------------------------------------|
| MAIN_RI  | 62      | DO  | Main UART ring indication         | 1.8 V power domain.                                                      |
| MAIN_DCD | 63      | DO  | Main UART data carrier detect     | <ul> <li>If unused, keep them<br/>open.</li> </ul>                       |
| MAIN_CTS | 64      | DO  | DTE clear to send signal from DCE | 1.8 V power domain.<br>Connect to DTE's CTS.<br>If unused, keep it open. |
| MAIN_RTS | 65      | DI  | DTE request to send signal to DCE | 1.8 V power domain.<br>Connect to DTE's RTS.<br>If unused, keep it open. |
| MAIN_DTR | 66      | DI  | Main UART data terminal ready     | 1.8 V power domain.                                                      |
| MAIN_RXD | 68      | DI  | Main UART receive                 | If unused, keep them                                                     |
| MAIN_TXD | 67      | DO  | Main UART transmit                | open.                                                                    |

### Table 16: Pin Definition of Main UART Interface

### Table 17: Pin Definition of Debug UART Interface

| Pin Name | Pin No. | I/O | Description        | Comment             |
|----------|---------|-----|--------------------|---------------------|
| DBG_RXD  | 11      | DI  | Debug UART receive | 1.8 V power domain. |



| DBG TXD | 12 | DO | Debug UART transmit | If unused, keep them |
|---------|----|----|---------------------|----------------------|
|         |    |    |                     | open.                |

The module provides a 1.8 V UART interface. A level translator should be used if the application is equipped with a 3.3 V UART interface. A level translator TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.

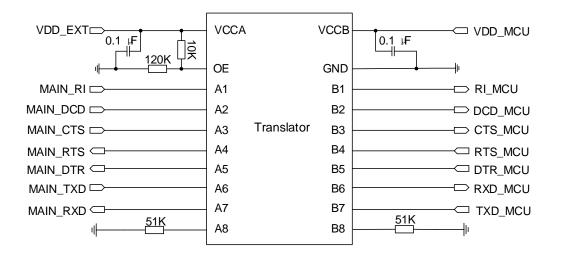
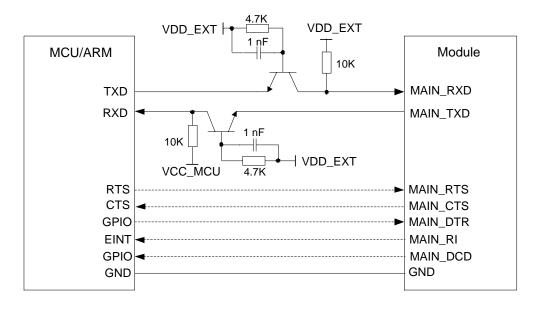




Figure 24: Reference Circuit with Level-shifting Chip

Please visit <u>http://www.ti.com</u> for more information.

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, please refer to that shown in solid lines, but pay attention to the direction of connection.

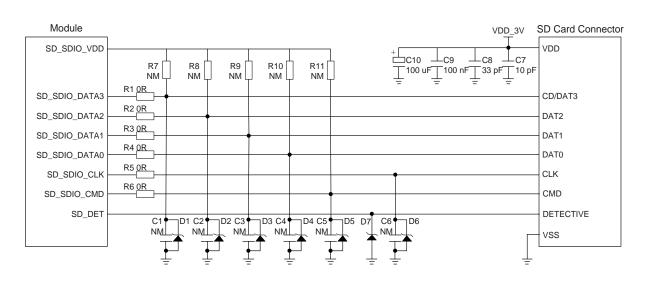




NOTE

QUECTEL

- 1. Transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module CTS is connected to the host CTS, and the module RTS is connected to the host RTS. Please pay attention to the I/O direction.


# 4.6. SD Card Interface

The module provides one SD card interface which supports SD 3.0 protocol.

### Table 18: Pin Definition of SD Card Interface

| Pin Name      | Pin No. | I/O | Description               | Comment                                         |
|---------------|---------|-----|---------------------------|-------------------------------------------------|
| SD_SDIO_CLK   | 32      | DO  | SD card SDIO clock        |                                                 |
| SD_SDIO_CMD   | 33      | DIO | SD card SDIO command      |                                                 |
| SD_SDIO_DATA0 | 31      | DIO | SD card SDIO data bit 0   | 1.8/2.8 V power domain.                         |
| SD_SDIO_DATA1 | 30      | DIO | SD card SDIO data bit 1   | If unused, keep them                            |
| SD_SDIO_DATA2 | 29      | DIO | SD card SDIO data bit 2   | open.                                           |
| SD_SDIO_DATA3 | 28      | DIO | SD card SDIO data bit 3   | _                                               |
| SD_SDIO_VDD   | 34      | PO  | SD card SDIO power supply | _                                               |
| SD_DET*       | 23      | DI  | SD card hot-plug detect   | 1.8 V power domain.<br>If unused, keep it open. |





The following figure illustrates a reference design of SD card interface with the module.

Figure 26: Reference Circuit of SD Card Interface

In SD card interface design, to ensure good communication performance with SD card, the following design principles should be complied with:

- The voltage range of SD card power supply VDD\_3V is 2.7–3.6 V and a sufficient current up to 800 mA should be provided. The maximum output current of SD\_SDIO\_VDD is 50 mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To avoid jitter of bus, R7–R11 are needed to pull up the SDIO to SD\_SDIO\_VDD. The value of these resistors is among 10 kΩ to 100 kΩ and the recommended value is 100 kΩ. SD\_SDIO\_VDD should be used as the pull-up power supply.
- To improve signal quality, it is recommended to add 0 Ω resistors R1–R6 in series between the module and the SD card. The bypass capacitors C1–C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module.
- To offer good ESD protection, it is recommended to add a TVS diode on SD card pins near the SD card connector with junction capacitance less than 15 pF.
- It is important to route the SDIO signal traces with ground surrounded. The impedance of SDIO data trace is 50 Ω (±10 %).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals.
- It is recommended to keep the traces of SD\_SDIO\_CLK, SD\_SDIO\_DATA [0:3] and SD\_SDIO\_CMD with equal length (the difference among them is less than 1 mm) and the total routing length needs to be less than 50 mm.
- Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of SDIO bus should be less than 15 pF.

# 4.7. ADC Interfaces

The module provides two Analog-to-Digital Converter (ADC) interfaces. To improve the accuracy of ADC, the trace of ADC interfaces should be surrounded by ground.

## Table 19: Pin Definition of ADC Interfaces

| Pin Name | Pin No. | I/O | Description         | Comment              |
|----------|---------|-----|---------------------|----------------------|
| ADC0     | 45      | AI  | General-purpose ADC | If unused, keep them |
| ADC1     | 44      | AI  | interface           | open.                |

The voltage value on ADC pins can be read via AT+QADC=<port>:

- AT+QADC=0: Read the voltage value on ADC0.
- **AT+QADC=1:** Read the voltage value on ADC1.

For more details about the AT command, see document [2].

The resolution of the ADC is up to 12 bits. The following table describes the characteristic of the ADC interface.

## **Table 20: Characteristics of ADC Interfaces**

| Name               | Min. | Тур. | Max.    | Unit |
|--------------------|------|------|---------|------|
| ADC0 Voltage Range | 0    | -    | VBAT_BB | V    |
| ADC1 Voltage Range | 0    | -    | VBAT_BB | V    |
| ADC Resolution     | -    | 12   | -       | bits |

# NOTE

- 1. The input voltage of ADC should not exceed its corresponding voltage range.
- 2. It is prohibited to directly supply any voltage to ADC pin when VBAT is removed.
- 3. It is recommended to use resistor divider circuit for ADC application and the divider resistance should not exceed 100 k $\Omega$ .

# 4.8. Indication Signal

The pin definition of indication signal is as follows:

| Table 21: Pin Defini | ion of Indication Signal |
|----------------------|--------------------------|
|----------------------|--------------------------|

| Pin Name   | Pin No. | I/O | Description                                     | Comment                                                |
|------------|---------|-----|-------------------------------------------------|--------------------------------------------------------|
| NET_MODE   | 5       | DO  | Indicate the module's network registration mode | 1.8 V power domain.                                    |
| NET_STATUS | 6       | DO  | Indicate the module's network activity status   | If unused, keep them open.                             |
| STATUS     | 61      | OD  | Indicate the module's operation status          | External pull-up is required. If unused, keep it open. |
| MAIN_RI    | 62      | DO  | Main UART ring indication                       | 1.8 V power domain.<br>If unused, keep it open.        |

# 4.8.1. Network Status Indication

The network indication pins can be used to drive network status indication LEDs. The module provides two network indication pins: NET\_MODE and NET\_STATUS.

Table 22: Working State of the Network Connection Status/Activity Indication

| Pin Name   | Status                                   | Description                  |
|------------|------------------------------------------|------------------------------|
| NET MODE   | Always High                              | Registered on UMTS network   |
| NET_MODE   | Always Low                               | Others                       |
| NET_STATUS | Flicker slowly (200 ms High/1800 ms Low) | Network searching            |
|            | Flicker slowly (1800 ms High/200 ms Low) | Idle                         |
|            | Flicker quickly (125 ms High/125 ms Low) | Data transmission is ongoing |
|            | Always High                              | Voice calling                |

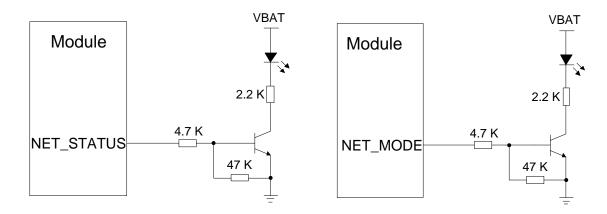
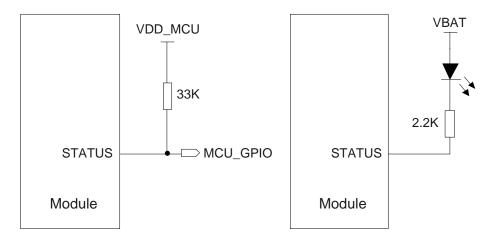




Figure 27: Reference Circuit of the Network Status Indication

# 4.8.2. STATUS

The STATUS pin is an open drain output for module's operation status indication. It can be connected to a GPIO of DTE with a pulled-up resistor, or as an LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state.

The following figure shows different circuit designs of STATUS, and you can choose either one according to the application demands.





# NOTE

The status pin cannot be used as indication of module shutdown status when VBAT is removed.

# 4.8.3. MAIN\_RI

**AT+QCFG="risignaltype", "physical**" can be used to configure MAIN\_RI behaviors. No matter on which port a URC is presented, the URC will trigger the behaviors of MAIN\_RI pin.

# NOTE

The URC can be outputted via UART port, USB AT port and USB modem port, which can be set by **AT+QURCCFG**. The default port is USB AT port.

In addition, MAIN\_RI behavior can be configured flexibly. The default behavior of the MAIN\_RI is shown as below.

### Table 23: Behaviors of the MAIN\_RI

| State | Response                                                |
|-------|---------------------------------------------------------|
| Idle  | MAIN_RI keeps at high level                             |
| URC   | MAIN_RI outputs 120 ms low pulse when a new URC returns |

The MAIN\_RI behavior can be changed via AT+QCFG. See *document* [2] for details.

# **5** RF Specifications

# 5.1. Cellular Network

# 5.1.1. Antenna Interface & Frequency Bands

The pin definition of main antenna and Rx-diversity antenna interfaces is shown below.

### Table 24: Pin Definition of Cellular Network Interface

| Pin Name | Pin No. | I/O | Description            | Comment                |
|----------|---------|-----|------------------------|------------------------|
| ANT_MAIN | 49      | AIO | Main antenna interface | 50 $\Omega$ impedance. |

# NOTE

Only passive antennas are supported.

## **Table 25: Operating Frequency**

| Operating Frequency | Transmit (MHz) | Receive (MHz) |
|---------------------|----------------|---------------|
| GSM850              | 824–849        | 869–894       |
| EGSM900             | 880–915        | 925–960       |
| DCS1800             | 1710–1785      | 1805–1880     |
| PCS1900             | 1850–1910      | 1930–1990     |
| WCDMA B1            | 1922–1978      | 2112–2168     |
| WCDMA B2            | 1852–1908      | 1932–1988     |



| WCDMA B5 | 826–847 | 871–892 |
|----------|---------|---------|
| WCDMA B8 | 882–913 | 927–958 |

# 5.1.2. Tx Power

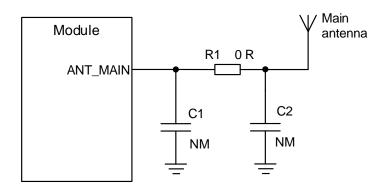
# Table 26: Tx Power

| Frequency         | Max. Tx Power   | Min. Tx Power |
|-------------------|-----------------|---------------|
| GSM850            | 33 dBm ±2 dB    | 5 dBm ±5 dB   |
| EGSM900           | 33 dBm ±2 dB    | 5 dBm ±5 dB   |
| DCS1800           | 30 dBm ±2 dB    | 0 dBm ±5 dB   |
| PCS1900           | 30 dBm ±2 dB    | 0 dBm ±5 dB   |
| GSM850 (8-PSK)    | 27 dBm ±3 dB    | 5 dBm ±5 dB   |
| EGSM900 (8-PSK)   | 27 dBm ±3 dB    | 5 dBm ±5 dB   |
| DCS1800 (8-PSK)   | 26 dBm ±3 dB    | 0 dBm ±5 dB   |
| PCS1900 (8-PSK)   | 26 dBm ±3 dB    | 0 dBm ±5 dB   |
| WCDMA B1/B2/B5/B8 | 24 dBm +1/-3 dB | < -49 dBm     |

# NOTE

In GPRS 4 slots Tx mode, the maximum output power is reduced by 4 dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

# 5.1.3. Rx Sensitivity


## Table 27: Conducted RF Receiving Sensitivity

| Frequency | Recei      | ving Sensitivity (Ty | 'p.) | 3GPP Requirement |
|-----------|------------|----------------------|------|------------------|
|           | Primary    | Diversity            | SIMO | (SIMO)           |
| GSM850    | -108 dBm   | -                    | -    | -102 dBm         |
| EGSM900   | -108 dBm   | -                    | -    | -102 dBm         |
| DCS1800   | -107.5 dBm | -                    | -    | -102 dBm         |
| PCS1900   | -107 dBm   | -                    | -    | -102 dBm         |
| WCDMA B1  | -110 dBm   | -                    | -    | -106.7 dBm       |
| WCDMA B2  | -109 dBm   | -                    | -    | -104.7 dBm       |
| WCDMA B5  | -109.5 dBm | -                    | -    | -104.7 dBm       |
| WCDMA B8  | -110 dBm   | -                    | -    | -103.7 dBm       |

# 5.1.4. Reference Design

The module provides one RF antenna interfaces for antenna connection.

It is recommended to reserve a  $\Pi$ -type matching circuit for better RF performance, and the  $\Pi$ -type matching components (C1, R1, C2) should be placed as close to the antenna as possible. The capacitors are not mounted by default.





# 5.2. Reference Design of RF Routing

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50  $\Omega$ . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

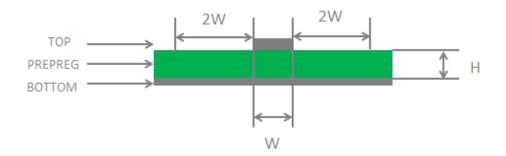



Figure 30: Microstrip Design on a 2-layer PCB

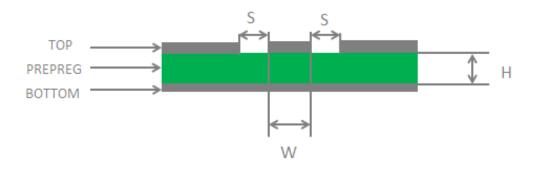



Figure 31: Coplanar Waveguide Design on a 2-layer PCB



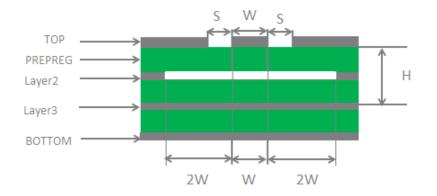
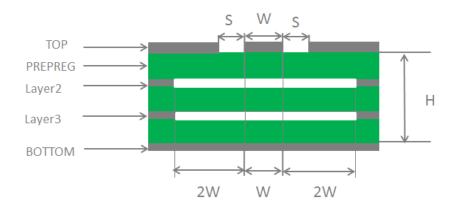




Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)



## Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2 × W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see *document [3]*.

# 5.3. Requirements for Antenna Design

### Table 28: Requirements for Antenna Design

| Antenna Type | Requirements                       |
|--------------|------------------------------------|
|              | VSWR: ≤ 2                          |
|              | Efficiency: > 30 %                 |
|              | Gain:1 dBi                         |
|              | Max. input power: 50 W             |
| GSM/UMTS     | Input impedance: 50 Ω              |
|              | Polarization: vertical             |
|              | Cable insertion loss:              |
|              | <b>&lt; 1 dB:</b> LB (< 1 GHz)     |
|              | <b>&lt; 1.5 dB:</b> MB (1–2.3 GHz) |

# 5.4. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose.

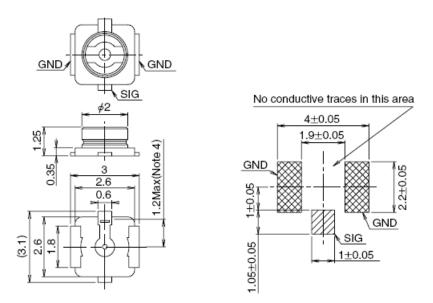



Figure 34: Dimensions of the Receptacle (Unit: mm)

Dia. 1.37mm

Coaxial cable

71.7



Applicable

cable

Weight (mg)

RoHS

Dia. 0.81mm

Coaxial cable

53.7

U.FL-LP-088 U.FL-LP-040 U.FL-LP-066 U.FL-LP(V)-040 U.FL-LP-062 6 Part No. Un ( 2.5mm Max. 2.5mm Max. 2.0mm Max. 2.4mm Max. 2.4mm Max. Mated Height (2.4mm Nom.) (2.3mm Nom.) (2.3mm Nom.) (2.4mm Nom.) (1.9mm Nom.)

U.FL-LP series connectors listed in the following figure can be used to match the U.FL-R-SMT.

| Figuro 35. | Specifications | of Matod | <b>D</b> luge | (Init: mm) |
|------------|----------------|----------|---------------|------------|
| Figure 55. | Specifications | UI Maleu | Flugs (       |            |

Dia. 0.81mm

Coaxial cable

34.8

YES

Dia. 1mm

Coaxial cable

45.5

The following figure describes the space factor of mated connector.

Dia. 1.13mm and

Dia. 1.32mm

Coaxial cable

59.1

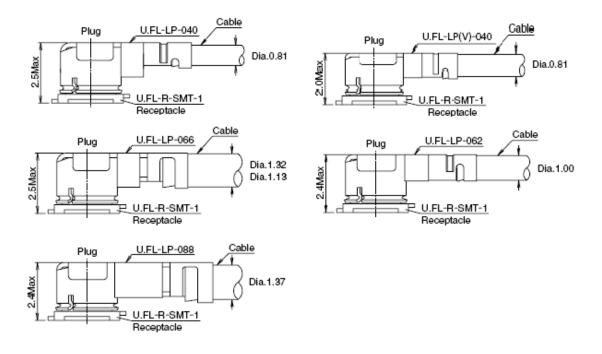



Figure 36: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit <u>http://hirose.com</u>.

# **6** Electrical Characteristics & Reliability

# 6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

# Table 29: Absolute Maximum Ratings

| Parameter               | Min. | Max.    | Unit |
|-------------------------|------|---------|------|
| VBAT_RF/VBAT_BB         | -0.3 | 5.5     | V    |
| USB_VBUS                | -0.3 | 5.5     | V    |
| Peak Current of VBAT_BB | -    | 0.8     | A    |
| Peak Current of VBAT_RF | -    | 2.0     | A    |
| Voltage on Digital Pins | -0.3 | 2.3     | V    |
| Voltage at ADC0         | 0    | VBAT_BB | V    |
| Voltage at ADC1         | 0    | VBAT_BB | V    |

# 6.2. Power Supply Ratings

# Table 30: Power Supply Ratings

| Parameter            | Description                                          | Conditions                                                                  | Min. | Тур. | Max. | Unit |
|----------------------|------------------------------------------------------|-----------------------------------------------------------------------------|------|------|------|------|
| VBAT                 | VBAT_BB and VBAT_RF                                  | The actual input voltages must stay between the minimum and maximum values. | 3.4  | 3.8  | 4.5  | V    |
|                      | Voltage drop during burst transmission.              | Maximum power control level at EGSM900.                                     | 0    | 0    | 400  | mV   |
| I <sub>VBAT_RF</sub> | Peak supply current<br>(during transmission<br>slot) | Maximum power control level at EGSM900.                                     | -    | -    | 2.0  | A    |
| USB_VBUS             | USB connection detection                             |                                                                             | 3.0  | 5.0  | 5.25 | V    |

# 6.3. Power Consumption

# Table 31: Power Consumption

| Description | Conditions                           | Тур. | Unit |
|-------------|--------------------------------------|------|------|
| OFF state   | Power down                           | 12   | μΑ   |
|             | AT+CFUN=0 (USB disconnected)         | 0.89 | mA   |
|             | EGSM900 @ DRX = 2 (USB disconnected) | 1.81 | mA   |
|             | EGSM900 @ DRX = 5 (USB disconnected) | 1.35 | mA   |
|             | EGSM900 @ DRX = 5 (USB suspend)      | 1.52 | mA   |
| Sleep state | EGSM900 @ DRX = 9 (USB disconnected) | 1.25 | mA   |
|             | DCS1800 @ DRX = 2 (USB disconnected) | 1.77 | mA   |
|             | DCS1800 @ DRX = 5 (USB disconnected) | 1.35 | mA   |
|             | DCS1800 @ DRX = 5 (USB suspend)      | 1.48 | mA   |
|             | DCS1800 @ DRX = 9 (USB disconnected) | 1.26 | mA   |

|              | WCDMA @ PF = 64 (USB disconnected)   | 2.33  | mA |
|--------------|--------------------------------------|-------|----|
|              | WCDMA @ PF = 64 (USB suspend)        | 2.49  | mA |
|              | WCDMA @ PF = 128 (USB disconnected)  | 1.65  | mA |
|              | WCDMA @ PF = 256 (USB disconnected)  | 1.31  | mA |
|              | WCDMA @ PF = 512 (USB disconnected)  | 1.15  | mA |
|              | EGSM900 @ DRX = 5 (USB disconnected) | 19.99 | mA |
|              | EGSM900 @ DRX = 5 (USB connected)    | 34.56 | mA |
| Idle state   | WCDMA @ PF = 64 (USB disconnected)   | 19.75 | mA |
|              | WCDMA @ PF = 64 (USB connected)      | 34.31 | mA |
|              | GSM850 4DL/1UL @ 32.78 dBm           | 300   | mA |
|              | GSM850 3DL/2UL @ 32.78 dBm           | 460   | mA |
|              | GSM850 2DL/3UL @ 31.22 dBm           | 550   | mA |
|              | GSM850 1DL/4UL @ 29.19 dBm           | 610   | mA |
|              | EGSM900 4DL/1UL @ 32.34 dBm          | 300   | mA |
|              | EGSM900 3DL/2UL @ 32.31 dBm          | 450   | mA |
|              | EGSM900 2DL/3UL @ 31.08 dBm          | 540   | mA |
| GPRS data    | EGSM900 1DL/4UL @ 29.28 dBm          | 600   | mA |
| transmission | DCS1800 4DL/1UL @ 29.65 dBm          | 260   | mA |
|              | DCS1800 3DL/2UL @ 29.58 dBm          | 400   | mA |
|              | DCS1800 2DL/3UL @ 28.03 dBm          | 480   | mA |
|              | DCS1800 1DL/4UL @ 26.16 dBm          | 560   | mA |
|              | PCS1900 4DL/1UL @ 29.63 dBm          | 260   | mA |
|              | PCS1900 3DL/2UL @ 29.63 dBm          | 400   | mA |
|              | PCS1900 2DL/3UL @ 28.11 dBm          | 480   | mA |
|              |                                      |       |    |

|                            | GSM850 4DL/1UL @ 27.53 dBm  | 270 | mA |
|----------------------------|-----------------------------|-----|----|
|                            | GSM850 3DL/2UL @ 27.51 dBm  | 400 | mA |
|                            | GSM850 2DL/3UL @ 25.47 dBm  | 520 | mA |
|                            | GSM850 1DL/4UL @ 23.28 dBm  | 600 | mA |
|                            | EGSM900 4DL/1UL @ 27.06 dBm | 270 | mA |
|                            | EGSM900 3DL/2UL @ 26.87 dBm | 400 | mA |
|                            | EGSM900 2DL/3UL @ 25.01 dBm | 520 | mA |
| EDGE data                  | EGSM900 1DL/4UL @ 22.87 dBm | 600 | mA |
| transmission               | DCS1800 4DL/1UL @ 25.66 dBm | 240 | mA |
|                            | DCS1800 3DL/2UL @ 25.50 dBm | 340 | mA |
|                            | DCS1800 2DL/3UL @ 23.95 dBm | 420 | mA |
|                            | DCS1800 1DL/4UL @ 21.93 dBm | 500 | mA |
|                            | PCS1900 4DL/1UL @ 26.62 dBm | 240 | mA |
|                            | PCS1900 3DL/2UL @ 26.06 dBm | 340 | mA |
|                            | PCS1900 2DL/3UL @ 24.38 dBm | 420 | mA |
|                            | PCS1900 1DL/4UL @ 22.30 dBm | 500 | mA |
|                            | WCDMA B1 HSDPA @ 22. 6 dBm  | 610 | mA |
|                            | WCDMA B2 HSDPA @ 22.26 dBm  | 600 | mA |
|                            | WCDMA B5 HSDPA @ 22.68 dBm  | 550 | mA |
|                            | WCDMA B8 HSDPA @ 22.64 dBm  | 570 | mA |
| WCDMA data<br>transmission | WCDMA B1 HSUPA @ 22.30 dBm  | 610 | mA |
|                            | WCDMA B2 HSUPA @ 22.30 dBm  | 600 | mA |
|                            | WCDMA B5 HSUPA @ 22.20 dBm  | 550 | mA |
|                            | WCDMA B8 HSUPA @ 22.30 dBm  | 570 | mA |

|                  | GSM900 PCL = 5 @ 32.24 dBm   | 290 | mA |
|------------------|------------------------------|-----|----|
|                  | GSM900 PCL = 12 @ 19.09 dBm  | 160 | mA |
|                  | GSM900 PCL = 19 @ 5.82 dBm   | 120 | mA |
|                  | EGSM900 PCL = 5 @ 32.24 dBm  | 300 | mA |
|                  | EGSM900 PCL = 12 @ 19.09 dBm | 160 | mA |
| GSM voice call   | EGSM900 PCL = 19 @ 5.82 dBm  | 130 | mA |
| GSIVI VOICE CAII | DCS1800 PCL = 0 @ 29.40 dBm  | 260 | mA |
|                  | DCS1800 PCL = 7 @ 15.75 dBm  | 160 | mA |
|                  | DCS1800 PCL = 15 @ -0.43 dBm | 140 | mA |
|                  | PCS1800 PCL = 0 @ 29.40 dBm  | 250 | mA |
|                  | PCS1800 PCL = 7 @ 15.75 dBm  | 150 | mA |
|                  | PCS1800 PCL = 15 @ -0.43 dBm | 130 | mA |
|                  | WCDMA B1 @ 22.77 dBm         | 600 | mA |
| WCDMA voice call | WCDMA B2 @ 22.77 dBm         | 610 | mA |
|                  | WCDMA B5 @ 22.42 dBm         | 550 | mA |
|                  | WCDMA B8 @ 22.43 dBm         | 580 | mA |

# 6.4. Digital I/O Characteristic

# Table 32: 1.8 V I/O Requirements

| Parameter       | Description         | Min. | Max. | Unit |
|-----------------|---------------------|------|------|------|
| VIH             | Input high voltage  | 1.2  | 2.0  | V    |
| V <sub>IL</sub> | Input low voltage   | -0.3 | 0.6  | V    |
| V <sub>OH</sub> | Output high voltage | 1.35 | 1.8  | V    |
| V <sub>OL</sub> | Output low voltage  | -0.3 | 0.45 | V    |

| Parameter       | Description         | Min. | Max. | Unit |
|-----------------|---------------------|------|------|------|
| USIM_VDD        | Power supply        | 1.7  | 1.9  | V    |
| Vih             | Input high voltage  | 1.2  | 2.0  | V    |
| V <sub>IL</sub> | Input low voltage   | -0.3 | 0.6  | V    |
| V <sub>OH</sub> | Output high voltage | 1.35 | 1.8  | V    |
| V <sub>OL</sub> | Output low voltage  | -0.3 | 0.45 | V    |

### Table 33: (U)SIM 1.8 V I/O Requirements

## Table 34: (U)SIM 3.0 V I/O Requirements

| Parameter       | Description         | Min. | Max. | Unit |
|-----------------|---------------------|------|------|------|
| USIM_VDD        | Power supply        | 2.7  | 3.05 | V    |
| VIH             | Input high voltage  | 1.95 | 3.05 | V    |
| VIL             | Input low voltage   | -0.3 | 1.0  | V    |
| V <sub>OH</sub> | Output high voltage | 2.55 | 3.0  | V    |
| Vol             | Output low voltage  | -0.3 | 0.45 | V    |

# 6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

ESD characteristics of the module's pins are as follows:

| <b>Table 35: Electrostatics</b> | Discharge C | Characteristics ( | (25 °C. | 45 % Relative | Humidity) |
|---------------------------------|-------------|-------------------|---------|---------------|-----------|
|                                 |             |                   | ,       |               |           |

| Tested Interfaces | Contact Discharge | Air Discharge | Unit |
|-------------------|-------------------|---------------|------|
| VBAT, GND         | ±8                | ±10           | kV   |



| Antenna Interfaces | ±8   | ±10 | kV |
|--------------------|------|-----|----|
| Other Interfaces   | ±0.5 | ±1  | kV |

# 6.6. Operating and Storage Temperatures

## **Table 36: Operating and Storage Temperatures**

| Parameter                                         | Min. | Тур. | Max. | Unit |
|---------------------------------------------------|------|------|------|------|
| Operating Temperature Range <sup>3</sup>          | -35  | +25  | +75  | °C   |
| Extended Operating Temperature Range <sup>4</sup> | -40  | -    | +85  | °C   |
| Storage temperature range                         | -40  | -    | +90  | °C   |

<sup>&</sup>lt;sup>3</sup> Within the operating temperature range, the module meets 3GPP specifications.

<sup>&</sup>lt;sup>4</sup> Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P<sub>out</sub>, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

# **7** Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are  $\pm 0.2$  mm unless otherwise specified.

# 7.1. Mechanical Dimensions

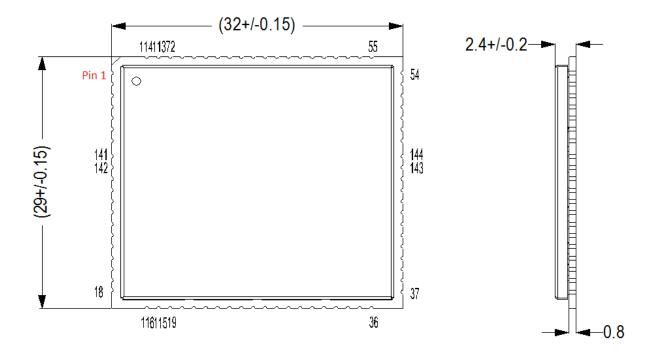



Figure 37: Module Top and Side Dimensions (Unit: mm)

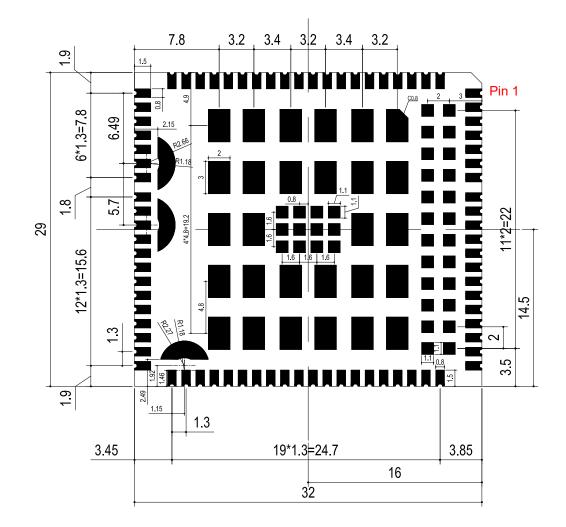
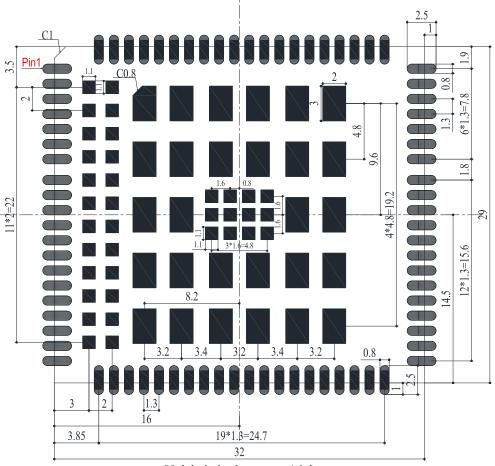




Figure 38: Module Bottom Dimensions View (Unit: mm)

## NOTE

The package warpage level of the module conforms to the *JEITA ED-7306* standard.

# 7.2. Recommended Footprint



Unlabeled tolerance: +/-0.2mm

# Figure 39: Recommended Footprint (Bottom View)

# NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

# 7.3. Top and Bottom Views

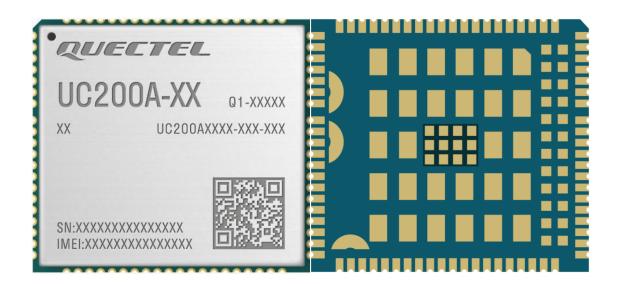



Figure 40: Top and Bottom View of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

# 8 Storage, Manufacturing & Packaging

# 8.1. Storage Conditions

The module is provided with vacuum-sealed package. MSL of the module is rated as 3, and its storage restrictions are shown as below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. The storage life (in vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours <sup>5</sup> in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g. a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
  - The module is not stored in Recommended Storage Condition;
  - Violation of the third requirement above occurs;
  - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
  - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
  - The module should be baked for 8 hours at 120 ±5 °C;
  - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

<sup>&</sup>lt;sup>5</sup> This floor life is only applicable when the environment conforms to IPC/JEDEC J-STD-033. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to IPC/JEDEC J-STD-033. And do not remove the packages of tremendous modules if they are not ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

# 8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.18–0.20 mm. For more details, see **document [4]**.

The peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

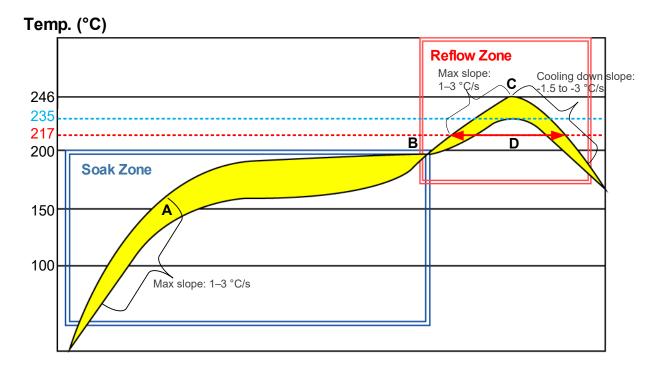



Figure 41: Recommended Reflow Soldering Thermal Profile

## **Table 37: Recommended Thermal Profile Parameters**

| Factor                                         | Recommendation   |
|------------------------------------------------|------------------|
| Soak Zone                                      |                  |
| Max slope                                      | 1–3 °C/s         |
| Soak time (between A and B: 150 °C and 200 °C) | 70–120 s         |
| Reflow Zone                                    |                  |
| Max slope                                      | 1–3 °C/s         |
| Reflow time (D: over 217 °C)                   | 40–70 s          |
| Max temperature                                | 235 °C to 246 °C |
| Cooling down slope                             | -1.5 to -3 °C/s  |
| Reflow Cycle                                   |                  |
| Max reflow cycle                               | 1                |

# NOTE

- 1. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 2. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 3. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 4. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 5. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document [4]*.

# 8.3. Packaging Specifications

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts injection tray packaging and details are as follow:

# 8.3.1. Carrier Tape

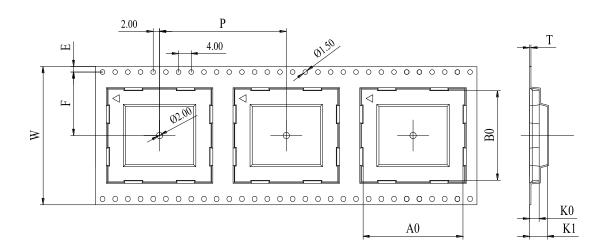



Figure 42: Carrier Tape Dimension Drawing

## Table 38: Carrier Tape Dimension Table (Unit: mm)

| W  | Р  | т    | A0   | B0   | K0  | K1  | F    | E    |
|----|----|------|------|------|-----|-----|------|------|
| 44 | 44 | 0.35 | 32.5 | 29.5 | 3.0 | 3.8 | 20.2 | 1.75 |

# 8.3.2. Plastic Reel

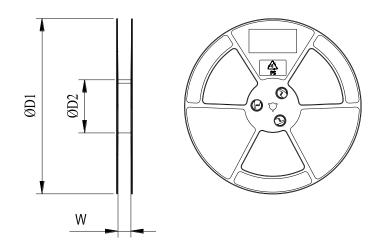
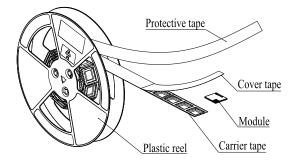
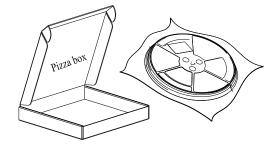




Figure 43: Plastic Reel Dimension Drawing

### Table 39: Plastic Reel Dimension Table (Unit: mm)

| øD1 | øD2 | W    |
|-----|-----|------|
| 330 | 100 | 44.5 |


# 8.3.3. Packaging Process



Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, vacuumize it.

Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection.\_1 plastic reel can load 250 modules.





Place the vacuum-packed plastic reel into the pizza box.

Put 4 packaged pizza boxes into 1 carton box and seal it. 1 carton box can pack 1000 modules.

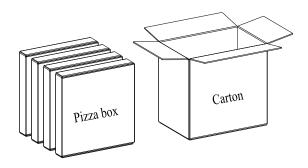



Figure 44: Packaging Process

# **9** Appendix References

## **Table 40: Related Documents**

### **Document Name**

- [1] Quectel\_UMTS&LTE\_EVB\_User\_Guide
- [2] Quectel\_UC200T\_AT\_Commands\_Manual
- [3] Quectel\_RF\_Layout\_Application\_Note
- [4] Quectel\_Module\_Secondary\_SMT\_Application\_Note

## Table 41: Terms and Abbreviations

| Abbreviation | Description                                 |
|--------------|---------------------------------------------|
| 3GPP         | 3rd Generation Partnership Project          |
| AMR          | Adaptive Multi-Rate                         |
| AMR-WB       | Adaptive Multi-Rate Wideband                |
| bps          | Bytes per second                            |
| СНАР         | Challenge Handshake Authentication Protocol |
| CMUX         | Connection MUX                              |
| CPE          | Customer-Premise Equipment                  |
| CS           | Coding Scheme                               |
| CTS          | Clear To Send                               |
| DCS          | Data Coding Scheme                          |
| DFOTA        | Delta Firmware Upgrade Over-The-Air         |

| DRX      | Discontinuous Reception                         |
|----------|-------------------------------------------------|
| DTE      | Data Terminal Equipment                         |
| EDGE     | Enhanced Data Rates for GSM Evolution           |
| EFR      | Enhanced Full Rate                              |
| EGSM     | Enhanced GSM                                    |
| EMI      | Electromagnetic Interference                    |
| ESD      | Electrostatic Discharge                         |
| ESR      | Equivalent Series Resistance                    |
| ETSI     | European Telecommunications Standards Institute |
| EVB      | Evaluation Board                                |
| FILE     | File Protocol                                   |
| FR       | Full Rate                                       |
| FTP      | File Transfer Protocol                          |
| FTPS     | FTP over SSL                                    |
| GMSK     | Gaussian Filtered Minimum Shift Keying          |
| GND      | Ground                                          |
| GPRS     | General Packet Radio Service                    |
| GSM      | Global System for Mobile Communications         |
| HR       | Half Rate                                       |
| HSDPA    | High Speed Downlink Packet Access               |
| HSPA+    | High Speed Packet Access                        |
| HSUPA    | High Speed Uplink Packet Access                 |
| HTTP     | Hypertext Transfer Protocol                     |
| HTTPS    | Hypertext Transfer Protocol Secure              |
| IMT-2000 | International Mobile Telecommunications 2000    |
|          |                                                 |

| LCC  | Leadless Chip Carrier (package)     |
|------|-------------------------------------|
| LDO  | Low-dropout Regulator               |
| LED  | Light Emitting Diode                |
| LGA  | Land Grid Array                     |
| LTE  | Long Term Evolution                 |
| MCU  | Microcontroller Unit                |
| MCS  | Modulation and Coding Scheme        |
| MLCC | Multi-layer Ceramic Capacitor       |
| MMS  | Multimedia Messaging Service        |
| MQTT | Message Queuing Telemetry Transport |
| MSB  | Most Significant Bit                |
| MSL  | Moisture Sensitivity Levels         |
| NITZ | Network Identity and Time Zone      |
| NTP  | Network Time Protocol               |
| OTT  | Over The Top                        |
| PA   | Power Amplifier                     |
| PAM  | Power Amplifier Module              |
| PAP  | Password Authentication Protocol    |
| PCB  | Printed Circuit Board               |
| PCM  | Pulse Code Modulation               |
| PDA  | Personal Digital Assistant          |
| PDU  | Protocol Data Unit                  |
| PF   | Paging Frame                        |
| PING | Packet Internet Groper              |
| PPP  | Point-to-Point Protocol             |
|      |                                     |

| PSK             | Phase Shift Keying                          |
|-----------------|---------------------------------------------|
| QAM             | Quadrature Amplitude Modulation             |
| QPSK            | Quadrature Phase Shift Keying               |
| RAM             | Random Access Memory                        |
| RF              | Radio Frequency                             |
| RoHS            | Restriction of Hazardous Substances         |
| RTS             | Request To Send                             |
| SDIO            | Secure Digital Input and Output Card        |
| SMS             | Short Message Service                       |
| SMT             | Surface Mount Technology                    |
| SMTP            | Simple Mail Transfer Protocol               |
| SMTPS           | Simple Mail Transfer Protocol Secure        |
| SSL             | Secure Sockets Layer                        |
| ТСР             | Transmission Control Protocol               |
| TVS             | Transient Voltage Suppressor                |
| UART            | Universal Asynchronous Receiver/Transmitter |
| UDP             | User Datagram Protocol                      |
| UMTS            | Universal Mobile Telecommunications System  |
| URC             | Unsolicited Result Code                     |
| USB             | Universal Serial Bus                        |
| (U)SIM          | (Universal) Subscriber Identity Module      |
| Vmax            | Maximum Voltage                             |
| Vnom            | Nominal Voltage                             |
| Vmin            | Minimum Voltage                             |
| V <sub>IH</sub> | High-level Input Voltage                    |
|                 |                                             |

| V <sub>IL</sub> | Low-level Input Voltage                |
|-----------------|----------------------------------------|
| V <sub>OH</sub> | High-level Output Voltage              |
| V <sub>OL</sub> | Low-level Output Voltage               |
| VSWR            | Voltage Standing Wave Ratio            |
| WCDMA           | Wideband Code Division Multiple Access |