

EG915U Series QuecOpenHardware Design

LTE Standard Module Series

Version: 1.0

Date: 2023-10-09

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2022-06-30	Len CHEN/ Ailsa WANG	Creation of the document
1.0	2023-10-09	Anla HUANG/ Woping WANG/ Loft XU	First official release

Contents

Sa	tety Informa	ition	3
Ab	out the Doc	ument	4
Со	ntents		5
Та	ble Index		7
Fiç	gure Index		9
1	Introduction	on	11
		ecial Marks	
2	Product O	verview	12
	2.1. Fre	equency Bands and Functions	12
	2.2. Key	y Features	13
	2.3. Fur	nctional Diagram	15
	2.4. Pin	Assignment	17
	2.5. Pin	Description	18
	2.6. EVI	B Kit	27
3	Operating	Characteristics	28
	3.1. Ope	erating Modes	28
	3.2. Sle	ep Mode	29
	3.2.1.	USB Application with USB Suspend/Resume Function	29
	3.2.2.	USB Application Without USB Suspend Function	30
	3.3. Airp	plane Mode	31
	3.4. PSI	M	31
	3.5. Pov	wer Supply	32
	3.5.1.	Power Supply Pins	32
	3.5.2.	Reference Design for Power Supply	32
	3.5.3.	Voltage Stability Requirements	33
	3.6. Tur	n On	34
	3.6.1.	Turn On with PWPKEY	34
	3.7. Tur	n Off	37
	3.7.1.	Turn Off with PWPKEY	37
	3.7.2.	Turn Off with ql_power_down()	38
	3.8. Res	set	38
4	Application	n Interfaces	41
	4.1. Ana	alog Audio Interfaces	41
	4.1.1.	Audio Interface Design Considerations	42
	4.1.2.	Microphone Interface Design	42
	4.1.3.	Earpiece Interface Design	43
	4.1.4.	Headphone Interface Design	43
	4.2. LCI	M Interface	44
	4.3. Car	mera Interface	45

	4.4.	Ext	ernal Flash Interface	46
	4.5.	SD	Card Interface	47
	4.6.	USI	B Interface	48
	4.7.	USI	B_BOOT Interface	50
	4.8.	(U)	SIM Interfaces	51
	4.9.	PCI	M and I2C Interfaces	53
	4.10.	UAI	RT Interfaces	55
	4.11.	AD	C Interfaces	58
	4.12.		l	
	4.13.	Indi	ication Signals	59
5	Anten		nterfaces	
	5.1.	Mai	in Antenna and Bluetooth/Wi-Fi Scan Antenna Interfaces	
	5.	1.1.	Pin Definition	62
	5.	1.2.	Operating Frequency	63
	5.	1.3.	Reference Design of Antenna Interfaces	65
	5.	1.4.	RF Routing Guidelines	65
	5.2.	Ant	tenna Installation	68
	5.	2.1.	Antenna Design Requirements	68
	5.	2.2.	RF Connector Recommendation	68
6	Electr	ical (Characteristics & Reliability	70
	6.1.	Abs	solute Maximum Ratings	70
	6.2.	Pov	wer Supply Ratings	70
	6.3.	Pov	wer Consumption	71
	6.4.	Tx	Power	78
	6.5.	Rx	Sensitivity	79
	6.6.	ESI	D Protection	81
	6.7.	Оре	erating and Storage Temperatures	82
7	Mecha	anica	al Information	83
	7.1.	Med	chanical Dimensions	83
	7.2.	Red	commended Footprint	85
	7.3.	Тор	and Bottom Views	86
8	Storag	ge, M	lanufacturing & Packaging	87
	8.1.	Sto	orage Conditions	87
	8.2.	Mai	nufacturing and Soldering	88
	8.3.	Pac	ckaging Specification	90
	8.	3.1.	Carrier Tape	90
	8.	3.2.	Plastic Reel	91
	8.	3.3.	Mounting Direction	91
	8.	3.4.	Packaging Process	92
9	Apper	ndix l	References	93

Table Index

Table 1: Special Marks	11
Table 2: Brief Introduction of the Module	12
Table 3: Frequency Bands and Functions	12
Table 4: Key Features	13
Table 5: Parameter Definition	18
Table 6: Pin Description	18
Table 7: Overview of Operating Modes	28
Table 8: Pin Definition of PSM Interfaces	31
Table 9: Pin Definition of Power Supply	32
Table 10: Pin Definition of PWRKEY	34
Table 11: Pin Definition of RESET_N	38
Table 12: Pin Definition of Analog Audio Interfaces	41
Table 13: Pin Definition of LCM Interface	44
Table 14: Pin Definition of Camera Interface	45
Table 15: Pin Definition of the Multiplexed External Flash Interface	46
Table 16: Pin Definition of the Multiplexed SD Card Interface	47
Table 17: Functions of USB Interface	49
Table 18: Pin Definition of USB Interface	49
Table 19: Pin Definition of USB_BOOT Interface	50
Table 20: Pin Definition of (U)SIM Interfaces	51
Table 21: Pin Definition of I2C and PCM Interfaces	54
Table 22: Pin Definition of Main UART Interface	56
Table 23: Pin Definition of Auxiliary UART Interface	56
Table 24: Pin Definition of Debug UART Interface	56
Table 25: Pin Definition of ADC Interfaces	58
Table 26: Characteristics of ADC Interfaces	58
Table 27: Mapping between q_adc_channel_id and ADC Channel	58
Table 28: Pin Definition of SPI	59
Table 29: Pin Definition of Indication Signals	60
Table 30: Working States of Indication Pins	60
Table 31: Pin Definition of RF Antennas	62
Table 32: Operating Frequency of EG915U-CN (Unit: MHz)	63
Table 33: Operating Frequency of EG915U-EU (Unit: MHz)	63
Table 34: Operating Frequency of EG915U-LA (Unit: MHz)	64
Table 35: Antenna Design Requirements	68
Table 36: Absolute Maximum Ratings	70
Table 37: Power Supply Ratings	70
Table 38: EG915U-CN Current Consumption	71
Table 39: EG915U-EU Current Consumption	73
Table 40: EG915U-LA Current Consumption	76
Table 41: EG915U-CN RF Output Power	78

Table 42: EG915U-EU RF Output Power	79
Table 43: EG915U-LA RF Output Power	79
Table 44: EG915U-CN Conducted RF Receiver Sensitivity (Unit: dBm)	79
Table 45: EG915U-EU Conducted RF Receiver Sensitivity (Unit: dBm)	80
Table 46: EG915U-LA Conducted RF Receiver Sensitivity (Unit: dBm)	80
Table 47: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)	81
Table 48: Operating and Storage Temperatures	82
Table 49: Recommended Thermal Profile Parameters	89
Table 50: Carrier Tape Dimension Table (Unit: mm)	90
Table 51: Plastic Reel Dimension Table (Unit: mm)	91
Table 52: Related Documents	93
Table 53: Terms and Abbreviations	93

Figure Index

Figure 1: Functional Diagram	16
Figure 2: Pin Assignment (Top View)	
Figure 3: Module Power Consumption in Sleep Mode	
Figure 4: Sleep Mode Application with USB Suspend/Resume Function	
Figure 5: Sleep Mode Application Without USB Suspend Function	
Figure 6: Reference Design of Power Supply	
Figure 7: Power Supply Limits during Burst Transmission	
Figure 8: Power Supply in Star Configuration	
Figure 9: Turning On the Module Using Driving Circuit	
Figure 10: Turning On the Module Using Button	
Figure 11: Turning On the Module Automatically	36
Figure 12: Turn-on Timing	36
Figure 13: Turn-off Timing	37
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit	39
Figure 15: Reference Circuit of RESET_N by Using Button	39
Figure 16: Timing of Resetting the Module	39
Figure 17: Reference Design for Microphone Interface	42
Figure 18: Reference Design for Earpiece Interface	43
Figure 19: Reference Design for Headphone Interface	43
Figure 20: SD Card Interface Reference Design	47
Figure 21: Reference Circuit of USB Application	49
Figure 22: Reference Circuit of USB_BOOT Interface	51
Figure 23: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector	52
Figure 24: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector	53
Figure 25: Reference Circuit of I2C and PCM Application with Audio Codec	55
Figure 26: Reference Circuit with Voltage-level Translator	57
Figure 27: Reference Circuit with Transistor Circuit	57
Figure 28: Reference Circuit of NET_STATUS	60
Figure 29: Reference Circuit of STATUS	61
Figure 30: Reference Circuit of RF Antennas	65
Figure 31: Microstrip Design on a 2-layer PCB	66
Figure 32: Coplanar Waveguide Design on a 2-layer PCB	66
Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	66
Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	67
Figure 35: Dimensions of the Receptacle (Unit: mm)	68
Figure 36: Specifications of Mated Plugs	69
Figure 37: Space Factor of Mated Connectors (Unit: mm)	69
Figure 38: Module Top and Side Dimensions (Unit: mm)	83
Figure 39: Module Bottom Dimensions	84
Figure 40: Recommended Footprint	85
Figure 41: Top and Bottom Views	86

Figure 42: Recommended Reflow Soldering Thermal Profile	. 88
Figure 43: Carrier Tape Dimension Drawing	. 90
Figure 44: Plastic Reel Dimension Drawing	. 91
Figure 45: Mounting Direction	. 91
Figure 46: Packaging Process	. 92

1 Introduction

QuecOpen[®] is a solution where the module acts as the main processor. Constant transition and evolution of both the communication technology and the market highlight its merits. It can help you to:

- Realize embedded applications' quick development and shorten product R&D cycle
- Simplify circuit and hardware structure design to reduce engineering costs
- Miniaturize products
- Reduce product power consumption
- Apply OTA technology
- Enhance product competitiveness and price-performance ratio

This document defines the EG915U series module in QuecOpen® solution and describes its air interfaces and hardware interfaces which are connected with your applications.

It can help you quickly understand interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with application notes and user guides, you can use this module to design and to set up mobile applications easily.

1.1. Special Marks

Table 1: Special Marks

Mark	Definition	
*	Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, argument, and so on, it indicates that the function, feature, interface, pin, AT command, argument, and so on, are under development and currently not supported; and the asterisk (*) after a model indicates that the sample of such model is currently unavailable.	
[]	Brackets ([]) used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SD_SDIO_DATA[0:3] refers to all four SD_SDIO_DATA pins, SD_SDIO_DATA0, SD_SDIO_DATA1, SD_SDIO_DATA2, and SD_SDIO_DATA3.	

2 Product Overview

EG915U series is an LTE Cat 1 module, which supports LTE-FDD, LTE-TDD and GPRS network data connection. It provides voice functionality as well as Bluetooth and Wi-Fi Scan functions to meet your specific application demands.

Table 2: Brief Introduction of the Module

Category		
Packaging and Number of Pins	LGA; 126	
Dimensions	$(23.6 \pm 0.2) \text{ mm} \times (19.9 \pm 0.2) \text{ mm} \times (2.4 \pm 0.2) \text{ mm}$	
Weight	2.5 ±0.2 g	
Wireless Network Functions	LTE/GSM/Bluetooth ¹ /Wi-Fi Scan ¹	
Variants	EG915U-CN ² , EG915U-EU, EG915U-LA	

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions

Wireless Network Type	EG915U-CN	EG915U-EU	EG915U-LA
LTE-FDD	B1/B3/B5/B8	B1/B3/B5/B7/B8/B20/ B28	B2/B3/B4/B5/B7/B8 /B28/B66
LTE-TDD	B34/B38/B39/B40/B41	-	-
GSM	900/1800 MHz	850/900/1800/1900 MHz	850/900/1800/ 1900 MHz
Bluetooth and Wi-Fi Scan ¹	2.4 GHz	2.4 GHz	2.4 GHz

¹ EG915U series supports Bluetooth and Wi-Fi Scan functions. Due to the shared antenna interface, the two functions cannot be used simultaneously. Pease contact Quectel Technical Support for details about specific models.

-

² Only EG915U-CN supports LTE-TDD. For details, please contact Quectel Technical Support.

2.2. Key Features

Table 4: Key Features

Feature	Description
Power Supply	Supply voltage: 3.3–4.3 V
	Typical supply voltage: 3.8 V
	EG915U-CN:
	 EGSM900: Class 4 (33 dBm ±2 dB)
	 DCS1800: Class 1 (30 dBm ±2 dB)
	 LTE-FDD: Class 3 (23 dBm ±2 dB)
Transmitting Power	 LTE-TDD: Class 3 (23 dBm ±2 dB)
	EG915U-EU & EG915U-LA:
	 GSM850/EGSM900: Class 4 (33 dBm ±2 dB)
	 DCS1800/PCS1900: Class 1 (30 dBm ±2 dB)
	• LTE-FDD: Class 3 (23 dBm ±2 dB)
	EG915U-CN:
	 Supports up to 3GPP Rel-13 Cat 1 FDD/TDD
	Supports 1.4/3/5/10/15/20 MHz RF bandwidth
	 Supports uplink QPSK and 16QAM
	 Supports downlink QPSK, 16QAM, and 64QAM
	 Max. transmission data rates:
	 LTE-FDD: 10 Mbps (DL)/5 Mbps (UL)
LTE Features	 LTE-TDD: 8.96 Mbps (DL)/3.1 Mbps (UL)
	EG915U-EU & EG915U-LA:
	 Supports up to 3GPP Rel-13 Cat 1 FDD
	Supports 1.4/3/5/10/15/20 MHz RF bandwidth
	 Supports uplink QPSK and 16QAM
	 Supports downlink QPSK, 16QAM, and 64QAM
	 Max. transmission data rates:
	 LTE-FDD: 10 Mbps (DL)/5 Mbps (UL)
	GPRS:
COM Fratures	 Supports GPRS multi-slot class 12
GSM Features	 Coding scheme: CS 1–4
	 Max. transmission data rates: 85.6 kbps (DL)/85.6 kbps (UL)
	 Supports TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/HTTPS/
Internet Protocol Features	FTPS/SSL/FILE/MQTT/MMS/SMTP/SMTPS protocols
	 Supports PAP and CHAP for PPP connections
	Text and PDU modes
SMS	Point-to-point MO and MT
	SMS cell broadcast

	 SMS storage: (U)SIM card and ME; ME by default 	
Audio Features	 Supports one analog audio input and two analog audio output channels HR/FR/EFR/AMR/AMR-WB Supports echo cancellation and noise suppression 	
LCM Interface	Supports LCM interface in SPI mode	
Camera Interface	 Provides one camera interface supporting cameras up to 0.3 MP; I/O pins only support 1.8 V Supports SPI two-data-line data transmission 	
External Flash Interface	 Supports connection to external flash chip The interface is multiplexed from other pins 	
SD Card Interface	 Supports one interface compliant with SD 2.0 specification and can be used for connecting external SD card Partial pins of the interface are multiplexed from other pin functions 	
USB Interface	 Compliant with USB 2.0 specification (slave mode only), with maximum transmission rate up to 480 Mbps Used for data transmission, software debugging and firmware upgrade Supports USB serial drivers for Windows 7/8/8.1/10/11, Linux 2.6–6.5, and Android 4.x–13.x 	
USB_BOOT Interface	Supports one USB_BOOT interface Forces the module into emergency download mode	
(U)SIM Interfaces Supports USIM/SIM card: 1.8/3.0 V Supports Dual SIM Single Standby		
PCM Interface	 Supports one PCM interface (slave mode only) Used for audio function with external codec connected 	
I2C Interface	Supports one I2C interfaceComplies with the I2C-bus specification	
UART Interfaces	 Main UART: Used for data transmission Baud rates: up to 921600 bps; 115200 bps by default Supports RTS and CTS hardware flow control Debug UART: Used for log output Baud rate: 921600 bps Cannot be used as a general-purpose UART Auxiliary UART: The baud rate is the same as that of the main UART 	
ADC Interfaces	Supports two ADC Interfaces	
SPI	 Supports one SPI (master mode only) 1.8 V voltage domain Clock frequency: up to 25 MHz 	

Indication Signals	STATUS Indicates the module's operation status		
mulcation Signals	 NET_STATUS indicates the network activity status 		
	 Main antenna interface (ANT_MAIN) 		
Antenna Interfaces	 Bluetooth and Wi-Fi Scan antenna interface (ANT_BT/WIFI_SCAN) 		
	 50 Ω characteristic impedance 		
Position Fixing	Supports Wi-Fi Scan		
	 Operating temperature range ³: -35 to +75 °C 		
Temperature Range	 Extended temperature range ⁴: -40 to +85 °C 		
	 Storage temperature range: -40 to +90 °C 		
Firmware Upgrade	Via USB interface or DFOTA		
RoHS	All hardware components are fully compliant with EU RoHS directive		

2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband
- Memory
- Radio frequency
- Peripheral interfaces

EG915U_Series_QuecOpen_Hardware_Design

³ Within this range, the module's indicators comply with 3GPP specification requirements.

⁴ Within this range, the module retains the ability to establish and maintain functions such as voice, SMS, emergency call, etc., without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as P_{out}, may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

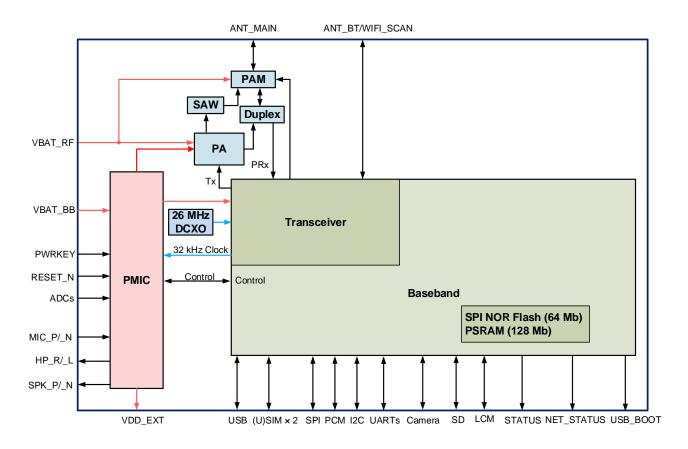


Figure 1: Functional Diagram

2.4. Pin Assignment

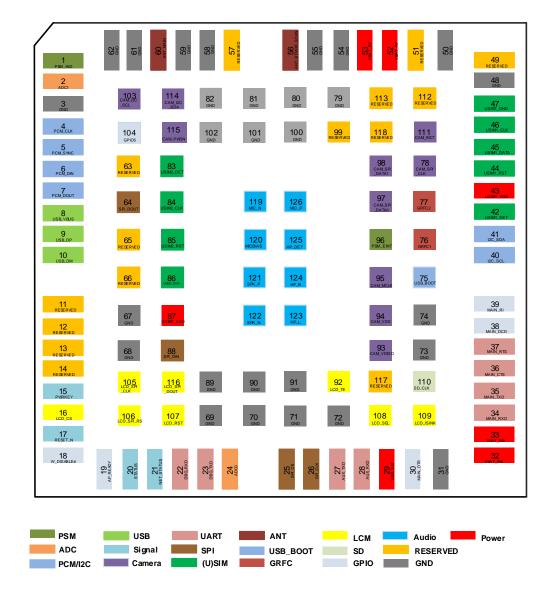


Figure 2: Pin Assignment (Top View)

NOTE

- 1. When the emergency download mode is not needed, do not pull up USB_BOOT before the module starts up successfully.
- 2. Keep unused and RESERVED pins unconnected, and all GND pins are connected to the ground
- 3. The module supports Dual SIM Single Standby. For details, please contact Quectel Technical Support.
- 4. When using pins 18, 19, 30, 38, 39, and 110, please note that these pins will have a period of

variable level state (not controllable by software) after the module is powered on: first high level (3 V) for 2 s and then low level (0 V) for 1.2 s, before they can be configured as 1.8 V input or output. Please evaluate whether the unstable output state on power-up meets your application design requirements based on the specific usage scenario and circuit design.

2.5. Pin Description

The following tables show the pin definition of the module.

Table 5: Parameter Definition

Parameter	Description			
Al	Analog Input			
AIO	Analog Input/Output			
AO	Analog Output			
DI	Digital Input			
DIO	Digital Input/Output			
DO	Digital Output			
OD	Open Drain			
PI	Power Input			
РО	Power Output			

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	It must be provided with sufficient current of at least 1 A.

VBAT_RF	52, 53	PI	Power supply for the module's RF part	_	Test points are recommended to be reserved. It must be provided with sufficient current of at least 2.5 A. Test points are recommended to be reserved.
VDD_EXT	29	РО	Provides 1.8 V for external circuit	Vnom = 1.8 V I _O max = 50 mA	Used with a 2.2 µF capacitor and TVS component. A test point is recommended to be reserved.
GND 3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102					
Turn On/Off/Rese	et				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	15	DI	Turns on/off the module	V 0.5 V	VBAT power domain. Active low. A test point is recommended to be reserved.
RESET_N	17	DI	Resets the module	- V _{IL} max = 0.5 V	VBAT power domain. Active low. A test point is recommended to be reserved if unused.
Indication Interfa	ices				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	20	DO	Indicates the module's operation status	V _{OH} min = 1.35 V	1.8 V power domain.
NET_STATUS	21	DO	Indicates the module's network activity status	V_{OL} max = 0.45 V	If unused, keep them open.
USB Interface					
USB Interface					

	No.			Characteristics	
USB_VBUS	8	Al	USB connection detect	Vmax = 5.25 V Vmin = 3.5 V Vnom = 5.0 V	A test point must be reserved.
USB_DP	9	AIO	USB 2.0 differential data (+)		USB 2.0 compliant. Requires differential
USB_DM	10	AIO	USB 2.0 differential data (-)		impedance of 90 Ω . Test points must be reserved.
(U)SIM Interfaces	S				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM1_VDD	43	PO	(U)SIM1 card power supply	I _o max = 50 mA 1.8 V (U)SIM: Vmax = 1.9 V Vmin = 1.7 V 3.0 V (U)SIM: Vmax = 3.05 V Vmin = 2.7 V	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_DATA	45	DIO	(U)SIM1 card data	1.8 V (U)SIM: $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.26 \text{ V}$ $V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$ 3.0 V (U)SIM: $V_{IL}max = 1.0 \text{ V}$ $V_{IH}min = 1.95 \text{ V}$ $V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 2.55 \text{ V}$	
USIM1_CLK	46	DO	(U)SIM1 card clock	1.8 V (U)SIM:	
USIM1_RST	44	DO	(U)SIM1 card reset	V_{OL} max = 0.45 V V_{OH} min = 1.35 V 3.0 V (U)SIM: V_{OL} max = 0.45 V V_{OH} min = 2.55 V	
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.26 V V_{IH} max = 2.0 V	1.8 V power domain. If unused, keep it open.
USIM1_GND	47	-	Ground	-	Specified ground for (U)SIM1 card.
USIM2_VDD	87	РО	(U)SIM2 card power supply	lomax = 50 mA 1.8 V (U)SIM:	Either 1.8 V or 3.0 V (U)SIM card is

				Vmax = 1.9 V	supported and can
				Vmin = 1.7 V	be identified
				3.0 V (U)SIM:	automatically by the
				Vmax = 3.05 V	module.
				Vmin = 2.7 V	
				1.8 V (U)SIM:	
				V_{IL} max = 0.6 V	
				V_{IH} min = 1.26 V	
				V_{OL} max = 0.45 V	
USIM2_DATA	86	DIO	(U)SIM2 card data	V_{OH} min = 1.35 V	
				3.0 V (U)SIM:	
				V_{IL} max = 1.0 V	
				V _{IH} min = 1.95 V	
				V_{OL} max = 0.45 V_{OL}	
				V_{OH} min = 2.55 V	
USIM2_CLK	84	DO	(U)SIM2 card clock	1.8 V (U)SIM: - V _{OL} max = 0.45 V	
				V_{OH} min = 1.35 V	
				3.0 V (U)SIM:	
USIM2_RST	85	DO	(U)SIM2 card reset	V_{OL} max = 0.45 V	
				V_{OH} min = 2.55 V	
				V OHITIM = 2.00 V	1.8 V power
	83 DI		(U)SIM2 card	$V_{IL}min = -0.3 V$	domain.
USIM2_DET		DI		V_{IL} max = 0.6 V	A test point must be
			hot-plug detect	$V_{IH}min = 1.26 V$	reserved for
				V_{IH} max = 2.0 V	debugging.
Main UART Inte	rface				00 0
	Pin			DC	
Pin Name	No.	I/O	Description	Characteristics	Comment
			Clear to send signal		
		5.0	from the module	V_{OL} max = 0.45 V	
MAIN_CTS	36	DO	(Connect to MCU's	$V_{OH}min = 1.35 V$	
			CTS)		
			Request to send		1.8 V power
MAINI DTO	07	D :	signal to the module	$V_{IL}min = -0.3 V$	domain.
MAIN_RTS	37	DI	(Connect to MCU's	$V_{IL}max = 0.6 V$	If unused, keep it
			RTS)	$V_{IH}min = 1.26 V$	open.
MAIN_RXD	34	DI	Main UART receive	V_{IH} max = 2.0 V	
	<u> </u>		71111 07111 1000146		_
MAIN_TXD	35	DO	Main UART transmit	V_{OL} max = 0.45 V	
_				V _{OH} min = 1.35 V	
Auxiliary UART	Interfac	е			

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
AUX_TXD	27	DO	Auxiliary UART transmit	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V power	
AUX_RXD	28	DI Auxiliary UART $V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.26 \text{ V}$ $V_{IH}max = 2.0 \text{ V}$		If unused, keep them open.		
Debug UART In	nterface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
DBG_RXD	22	DI	Debug UART receive	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.26 V V_{IH} max = 2.0 V	1.8 V power domain. Test points must be reserved for	
DBG_TXD	23	DO	Debug UART transmit	$V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$	debugging.	
PSM Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PSM_EINT	96	DI	External interrupt, wakes up the module from PSM		1.8 V power domain. Wakes up the module from PSM when being pulled high externally. If unused, keep it open.	
PSM_IND*	ND* 1 DO Indicate the module's power saving mode		1.8 V power domain. If unused, keep it open.			
I2C and PCM Ir	nterfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PCM_SYNC	5	DI	PCM data frame sync	V _{IL} min = -0.3 V	1.8 V power	
PCM_CLK	4	DI	PCM clock	V_{IL} max = 0.6 V V_{IH} min = 1.26 V	domain. If unused, keep	
PCM_DIN	6	DI	PCM data input	V_{IH} max = 2.0 V	them open.	
PCM_DOUT	7	DO	PCM data output	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	Support slave mode only.	

I2C_SCL	40	OD	I2C serial clock	_	1.8 V power domain.
I2C_SDA	41	OD	I2C serial data		They need to be pulled up to 1.8 V externally. If unused, keep them open.
RF Antenna Int	erface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	AIO	Main antenna interface		50 Ω characteristic impedance.
ANT_BT/ WIFI_SCAN	56	AIO	The shared interface for Bluetooth and Wi-Fi Scan		Bluetooth and Wi-Fi Scan cannot be used simultaneously; Wi-Fi Scan only supports receiving. 50 Ω characteristic impedance. If unused, keep it open.
Antenna Tuner	Control I	nterface			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GRFC1	76	DO		0.45\/	1.8 V power
GRFC2	77	DO	Generic RF Controller	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	domain. If unused, keep them open.
SPI					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SPI_CLK	26	DO	SPI clock	V_{OL} max = 0.45 V	
SPI_CLK SPI_CS	26 25	DO	SPI clock SPI chip select	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V power
				_	1.8 V power domain. If unused, keep them open. Supports master mode only.

LCM Interface	LCM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
LCD_TE	92	DI	LCD tearing effect	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.26 V V_{IH} max = 2.0 V		
LCD_RST	107	DO	LCD reset			
LCD_SEL	108	DO	Reserved			
LCD_CS	16	DO	LCD chip select	V_{OL} max = 0.45 V - V_{OH} min = 1.35 V	1.8 V power domain.	
LCD_SPI_CLK	105	DO	LCD SPI clock	- VOHIIIII - 1.00 V	If unused, keep	
LCD_SPI_RS	106	DO	LCD SPI register select	_	them open.	
LCD_SPI_ DOUT	116	DIO	LCD SPI data	$V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.26 \text{ V}$ $V_{IH}max = 2.0 \text{ V}$ $V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$	_	
LCD_ISINK	109	PI	Sink current input. Backlight adjustment	Imax = 200 mA. Current is configurable.	It is driven by sink current, connected to the cathode of the backlight, and the brightness can be adjusted with current control.	
Camera Interfac	е					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
CAM_MCLK	95	DO	Camera master clock	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.	
CAM_I2C_SCL	103	OD	Camera I2C clock		Pull each of them up to 1.8 V power	
CAM_I2C_SDA	114	OD	Camera I2C data		domain with an external resistor. If unused, keep them open.	

$\label{eq:usb_both} \text{USB_BOOT} \qquad 75 \qquad \text{DI} \qquad \begin{array}{lll} \text{Force the} & \text{V_{IL}min} = -0.3 \text{ V} & \text{the module into} \\ & \text{module into} & \text{V_{IL}max} = 0.6 \text{ V} & \text{emergency} \\ & \text{emergency download} & \text{V_{IH}min} = 1.26 \text{ V} & \text{download mode} \\ & \text{mode} & \text{V_{IH}max} = 2.0 \text{ V} & \text{should be reserved} \\ & & \text{during design.} \\ & & \text{A test point is} \\ & & \text{recommended to be reserved.} \end{array}$							
DATAO 97 DI Camera SPI data bit 0 V _{I+min} = 1.26 V V _{I+min} = 1.26 V V _{I+min} = 2.0 V 1.8 V power domain. If unused, keep them open. CAM_SPI_DATA1 98 DI Camera SPI data bit 1 V _{I+min} = 1.26 V V _{I+min} = 1.26 V V _{I+min} = 1.26 V V _{I-min} = 1.26 V V _{I+min} = 1.26 V V _{I+min} = 1.26 V V _{I-min} = 1.26 V V _{I+min} = 1.26 V V _{I+min} = 1.26 V V _{I-min} = 1.26 V V _{I-min} = 1.35 V V _{I-min} = 1.26 V V _{I-min} = 1.35 V V _{I-min} = 0.45 V V _{I-min} = 1.35 V Power supply of camera supply of camera. If unused, keep them open. CAM_VDDIO 94 PO Camera analog vower supply low supply of camera. If unused, keep them open. Camera analog vower supply of camera. If unused, keep them open. If unused, keep them open. GPIO Interfaces DIO DC Characteristics Comment MAIN_DTR 39 DIO General-purpose input/output Used as GPIO by default. If unused, keep them open. W_DISABLE# 18 DIO DC Characteristics Comment USB_BOOT Interface Pin Name Pin Name Violation into emergency download mode Violation into emergency download mode <td>CAM_SPI_CLK</td> <td>78</td> <td>DI</td> <td>Camera SPI clock</td> <td>V_{IL}min = -0.3 V</td> <td></td>	CAM_SPI_CLK	78	DI	Camera SPI clock	V _{IL} min = -0.3 V		
CAM_PWDN		97	DI	Camera SPI data bit 0		•	
CAM_PWDN 115 DO Camera power down Volumin = 1.35 V Volumin = 1.35 V CAM_RST 111 DO Camera reset Volumin = 1.35 V CAM_VDD 94 PO Camera analog power supply Vnom = 2.8 V lomax = 100 mA Power supply of camera. CAM_VDDIO 93 PO Camera digital power supply Vnom = 1.8 V lomax = 100 mA If unused, keep them open. GPIO Interfaces Pin Name No. VO Description DC Characteristics Comment MAIN_DCD 38 DIO General-purpose input/output Used as GPIO by default. 1.8 V power domain. MAIN_DTR 30 DIO General-purpose input/output DC Characteristics Comment W_DISABLE# 18 DIO DIO DC Characteristics Comment USB_BOOT Interface Pin Name No I/O Description DC Characteristics Comment USB_BOOT 75 DI Force the module into emergency download Vil.min = -0.3 V Vil.min = -0.3 V Vil.min = 1.26 V Vil.min =		98	DI	Camera SPI data bit 1	V_{IH} max = 2.0 V	If unused, keep	
CAM_VDD 94 PO Camera analog power supply power supply lomax = 100 mA camera. Power supply of camera = 100 mA camera. CAM_VDDIO 93 PO Camera digital power supply Vnom = 1.8 V lomax = 100 mA If unused, keep them open. GPIO Interfaces Pin Name Pin No. VO Description DC Characteristics Comment MAIN_DCD 38 DIO Used as GPIO by default. 1.8 V power domain. 1.8 V power domain. MAIN_DTR 39 DIO input/output 1.8 V power domain. If unused, keep them open. W_DISABLE# 18 DIO DIO To Characteristics Comment USB_BOOT Interface Force the module into emergency download model into emergency download into emergency	CAM_PWDN	115	DO	Camera power down	V_{OL} max = 0.45 V	them open.	
CAM_VDDIO 94 PO power supply lomax = 100 mA camera. CAM_VDDIO 93 PO Camera digital power supply lomax = 100 mA camera. CAM_VDDIO 93 PO Camera digital power supply lomax = 100 mA camera. If unused, keep them open. If unused, keep them open. CAM_VDDIO MAIN_DCD 38 DIO MAIN_DCD 38 DIO MAIN_DCD 38 DIO MAIN_DCD MAIN_D	CAM_RST	111	DO	Camera reset	V_{OH} min = 1.35 V		
GPIO Interfaces Pin Name Pin No. VO Description DC Characteristics Comment MAIN_DCD 38 DIO DIO DIO DIO DIO MAIN_DTR 30 DIO DIO DIO W_DISABLE# 18 DIO DIO DIO USB_BOOT Interface Pin Name Pin No VO Description DC Characteristics Comment USB_BOOT Interface Pin Name Pin No VO Description DC Characteristics Comment Force the module into emergency download mode VILMINI = -0.3 V	CAM_VDD	94	РО	•			
Pin Name Pin No. VO Description DC Characteristics Comment GPIO5 104 DIO MAIN_DCD 38 DIO MAIN_RI 39 DIO MAIN_DTR 30 DIO W_DISABLE# 18 DIO AP_READY 19 DIO USB_BOOT Interface Pin Name Pin No VO Description DC Characteristics Comment Force the module into emergency download mode should be reserved. Force the module into emergency download mode should be reserved.	CAM_VDDIO	93	РО	• .		•	
Pin Name No. Vo Description Characteristics Comment	GPIO Interfaces						
MAIN_DCD 38 DIO MAIN_RI 39 DIO MAIN_DTR 30 DIO W_DISABLE# 18 DIO AP_READY 19 DIO USB_BOOT Interface Pin Name Pin No I/O Description DC Characteristics Force the module into emergency download mode Force the module into emergency download mode Force the module into emergency download mode MIDE ACTIVE THE MID	Pin Name		I/O	Description	_	Comment	
MAIN_RI 39 DIO MAIN_DTR 30 DIO W_DISABLE# 18 DIO AP_READY 19 DIO USB_BOOT Interface Pin Name Pin No I/O Description DC Characteristics Force the module into emergency download mode mode Force the module into emergency download mode Force the module into emergency download mode Force the module into emergency download mode No VI_Hmin = 1.26 V download mode should be reserved during design. A test point is recommended to be reserved.	GPIO5	104	DIO				
MAIN_DTR 30 DIO MAIN_DTR 30 DIO W_DISABLE# 18 DIO USB_BOOT Interface Pin Name Pin No VO Description Force the module into emergency download mode mode Pin W_ILmin = -0.3 V the module into emergency download mode MODE MAIN_DTR 30 DIO USB_BOOT Interface Pin Name Pin No VO Description Force the module into emergency download WIHmin = 1.26 V download mode should be reserved.	MAIN_DCD	38	DIO			•	
W_DISABLE# 18 DIO AP_READY 19 DIO USB_BOOT Interface Pin Name Pin No I/O Description DC Characteristics Force the module into emergency download mode Force the module into emergency download mode Force the module into emergency download mode VILMIN = -0.3 V the module into emergency download mode VILMIN = 1.26 V download mode VILMIN = 1.26 V download mode should be reserved.	MAIN_RI	39	DIO	General-purpose	General-purpose		
W_DISABLE# 18 DIO AP_READY 19 DIO USB_BOOT Interface Pin Name Pin No I/O Description DC Characteristics Force the module into emergency download mode Force the module into emergency download mode Force the module into emergency download mode W_ILMMIN = 1.26 V download mode should be reserved.	MAIN_DTR	30	DIO	input/output			
USB_BOOT Interface Pin Name Pin No I/O Description DC Characteristics 1.8 V power domain. Active high. A circuit that can see module into emergency download mode VILmin = -0.3 V the module into emergency download mode VIHmin = 1.26 V should be reserved during design. A test point is recommended to be reserved.	W_DISABLE#	18	DIO			•	
Pin Name Pin No	AP_READY	19	DIO				
Pin Name No Description Characteristics 1.8 V power domain. Active high. A circuit that can set the module into emergency download mode Towns and the module into emergency download with mode No Description Characteristics 1.8 V power domain. Active high. A circuit that can set the module into emergency download vill max = 0.6 V emergency download mode which is recommended to be reserved.	USB_BOOT Inter	rface					
$USB_BOOT \qquad 75 \qquad DI \qquad \begin{cases} Force \ the \\ module \ into \\ emergency \ download \\ mode \end{cases} \qquad V_{IL}min = -0.3 \ V \qquad the \ module \ into \\ emergency \ download \ download \ mode \\ mode \qquad V_{IH}min = 1.26 \ V \qquad download \ mode \\ V_{IH}max = 2.0 \ V \qquad should \ be \ reserved \ during \ design. \\ A \ test \ point \ is \ recommended \ to \ be \ reserved. \end{cases}$	Pin Name		I/O	Description		Comment	
	USB_BOOT	75	DI	module into emergency download	V_{IL} max = 0.6 V V_{IH} min = 1.26 V	domain. Active high. A circuit that can set the module into emergency download mode should be reserved during design. A test point is recommended to be	
ADD IIIIEII (UE)	ADC Interfaces						

Pin Name	Pin No.	I/O	Description	DC Characteristics	Cor	mment
ADC0	24	Al			It is	recommended
ADC1	2	Al	General-purpose ADC interfaces	Voltage range: 0 V to VBAT	divid If ur	eserve a voltage der circuit. nused, keep n open.
SD Card Interf	ace					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Cor	nment
SD_CLK	110	DO	SD card clock		don	V power nain. nused, keep it n.
Analog Audio	Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristic	cs	Comment
MIC_N	119	Al	Microphone analog input (-)			
MICBIAS	120	РО	Bias voltage output for microphone	Vmax = 3.0 V Vmin = 2.2 V Vnom = 2.2 V		
SPK_P	121	АО	Analog audio differential output (+)			
SPK_N	122	АО	Analog audio differential output (-)			If unused, keep
MIC_P	126	Al	Microphone analog input (+)			it open.
HP_L	123	АО	Headphone left channel output			
HP_R	124	АО	Headphone right channel output			
HP_DET	125	DI	Headphone hot-plug detection			
RESERVED						
Pin Name	Pin No).				
RESERVED	11–14.	49, 51, 5	57, 63, 65, 66, 99, 112, 113	3, 117, 118		

NOTE

- 1. MAIN_DCD, MAIN_RI, MAIN_DTR, W_DISABLE#, AP_READY are not defined with functions corresponding to the pin names, but are used as GPIOs by default. For GPIO configuration, see *document* [1].
- 2. When using pins 18, 19, 30, 38, 39 and 110, please note that these pins will have a period of variable level state (not controllable by software) after the module is powered on: first high level (3 V) for 2 s and then low level (0 V) for 1.2 s, before they can be configured as 1.8 V input or output. Please evaluate whether the unstable output state on power-up meets your application design requirements based on the specific usage scenario and circuit design.

2.6. EVB Kit

Quectel supplies an evaluation board (LTE OPEN EVB) with accessories to develop and test the module. For more details, see *document* [2].

3 Operating Characteristics

3.1. Operating Modes

The following table briefly outlines the operating modes referred in the following chapters.

Table 7: Overview of Operating Modes

Mode	Details			
Full Functionality	Idle	Software is active. The module remains registered on the network and is ready to send and receive data.		
Mode	Voice/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.		
Minimum Functionality Mode	without remo	<pre>ql_dev_set_modem_fun() can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card are invalid.</pre>		
Airplane Mode	<pre>ql_dev_set_modem_fun() can set the module to airplane mode where RF function is invalid.</pre>			
Sleep Mode	In this mode, current consumption of the module is reduced to a low level. The module remains the ability to receive paging message, SMS, voice calls and TCP/UDP data from network normally.			
PSM	In this mode, current consumption of the module is reduced to a minimized level. API function cannot be sent to the module, but the module remains the ability to receive paging message from station and be woken up to work.			
Power Down Mode		own the power supply. Software is not active. However, Operating ected to VBAT pins remains applied.		

NOTE

For more details about the API function, see document [3].

3.2. Sleep Mode

In sleep mode, the module can reduce power consumption to a low level. The following section describes power saving procedures of the module.

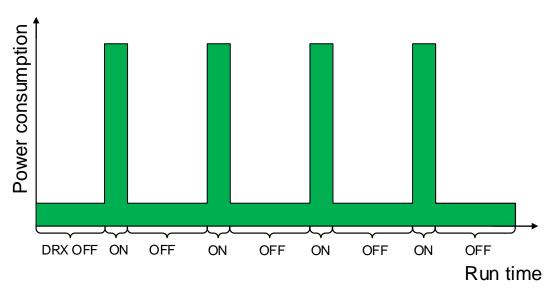


Figure 3: Module Power Consumption in Sleep Mode

NOTE

DRX cycle values are transmitted over the wireless network.

3.2.1. USB Application with USB Suspend/Resume Function

For the following two situations:

- The host supports USB suspend/resume and remote wakeup function
- The host supports USB suspend/resume, but does not support remote wake-up function.

Three preconditions must be met to set the module to sleep mode:

- Enable sleep function by using ql_autosleep_enable(). For more details about the API function, see document [4].
- Ensure that all wakelocks have been released.
- Ensure the host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure illustrates the connection between the module and the host.

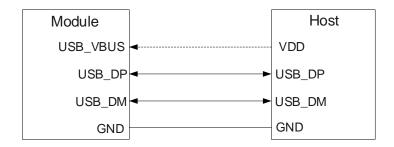


Figure 4: Sleep Mode Application with USB Suspend/Resume Function

You can wake up the module by sending data to it through USB.

3.2.2. USB Application Without USB Suspend Function

If the host does not support USB suspend function, disconnect USB_VBUS with an external control circuit to make the module enter sleep mode.

- Enable sleep function by using *ql_autosleep_enable()*.
- Ensure that all wakelocks have been released.
- Disconnect the USB VBUS.

The following figure illustrates the connection between the module and the host.

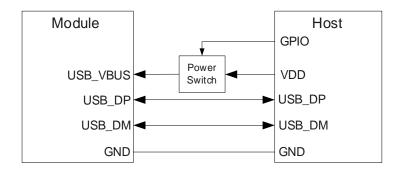


Figure 5: Sleep Mode Application Without USB Suspend Function

You can wake up the module by turning on the power switch to supply power to USB_VBUS.

NOTE

- 1. Pay attention to the level match shown in the dotted line between the module and the host.
- 2. USB suspend is supported on Linux system but not on Windows system.

3.3. Airplane Mode

When the module enters airplane mode, the RF function is disabled and all API functions related to it are inaccessible.

ql_dev_set_modem_fun() provides the choice of functionality level through setting parameter *at_dst_cfun* into 0, 1 or 4.

- at_dst_cfun is 0: Minimum functionality (Both RF function and (U)SIM functions are disabled).
- at_dst_cfun is 1: Full functionality mode (by default).
- at_dst_cfun is 4: Airplane mode (RF function is disabled).

3.4. PSM

The module supports power saving mode (PSM).

It enters the PSM through calling *ql_psm_sleep_enable()* and *ql_autosleep_enable()* when working normally. Pulling up PSM_EINT pin externally or setting the timer by software will enable the module to exit PSM.

Table 8: Pin Definition of PSM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PSM_EINT	96	DI	External interrupt, wakes up the module from PSM	Wakes up the module from PSM when being pulled high externally. If unused, keep it open.
PSM_IND*	1	DO	Indicate the module's power saving mode	If unused, keep it open.

NOTE

For more details about ql_psm_sleep_enable(), see **document [5]**.

3.5. Power Supply

3.5.1. Power Supply Pins

The module provides 4 VBAT pins for connection with an external power supply.

- Two VBAT_RF pins for RF part.
- Two VBAT_BB pins for BB part.

Table 9: Pin Definition of Power Supply

Pin Name	Pin No.	I/O	Description	Min.	Тур.	Max.	Unit
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	2.2	3.8	4.2	\/
VBAT_RF	52, 53	PI	Power supply for the module's RF part	- 3.3	3.8	4.3	V
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102						

3.5.2. Reference Design for Power Supply

The power design for the module is very important, as the performance of the module largely depends on the power source. The power supply of the module should be able to provide sufficient current of at least 3.0 A when the GSM or both GSM and LTE are available, and provide sufficient current of at least 2.0 A when only LTE is available. If the voltage drop between input and output is not too high, it is suggested that an LDO should be used. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is recommended.

The following figure illustrates a reference design for 5 V input power source. The typical output voltage of the power supply is about 3.8 V and the maximum load current is 3.0 A.

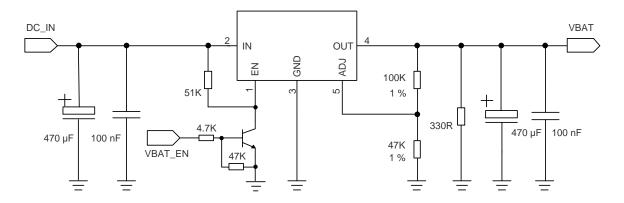


Figure 6: Reference Design of Power Supply

3.5.3. Voltage Stability Requirements

The power supply range of the module is from 3.3 V to 4.3 V. Please make sure the input voltage never drops below 3.3 V.

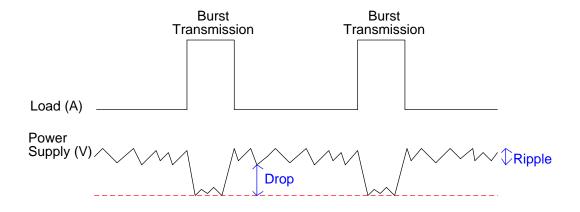


Figure 7: Power Supply Limits during Burst Transmission

To decrease voltage drop, a filter capacitor of about 100 μ F with low ESR (ESR \leq 0.7 Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT_BB and VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with the star configuration. The width of VBAT_BB trace should be at least 2 mm; and the width of VBAT_RF trace should be at least 2.5 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to ensure the stability of power source, it is suggested that a TVS of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used. The following figure shows the star configuration of the power supply.

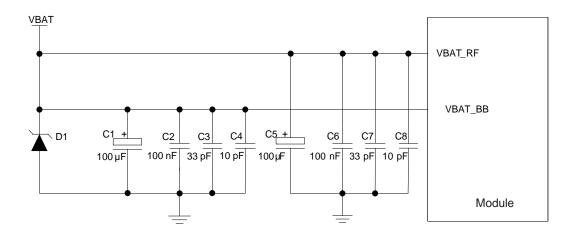


Figure 8: Power Supply in Star Configuration

3.6. Turn On

3.6.1. Turn On with PWPKEY

Table 10: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	DI	Turns on/off the module	VBAT power domain. Active low. A test point is recommended to be reserved.

When the module is in power down mode, you can turn it on to normal mode by driving the PWRKEY pin low for at least 2 s. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

Figure 9: Turning On the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When you are pressing the button, electrostatic strike may be generated from finger. Therefore, you must place a TVS nearby the button for ESD protection. A reference circuit is shown in the following figure.

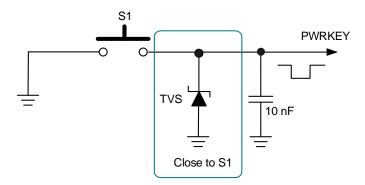


Figure 10: Turning On the Module Using Button

If the module needs to turn on automatically, PWRKEY is connected to GND by connecting a resistor less than 1 k Ω . However, ensure that the voltage of VBAT_BB and VBAT_RF pins is below 0.5 V before power-up.

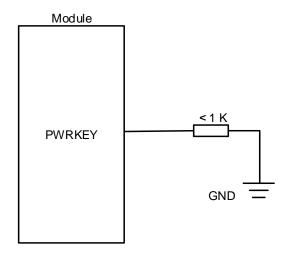


Figure 11: Turning On the Module Automatically

The turn-on timing is illustrated in the following figure.

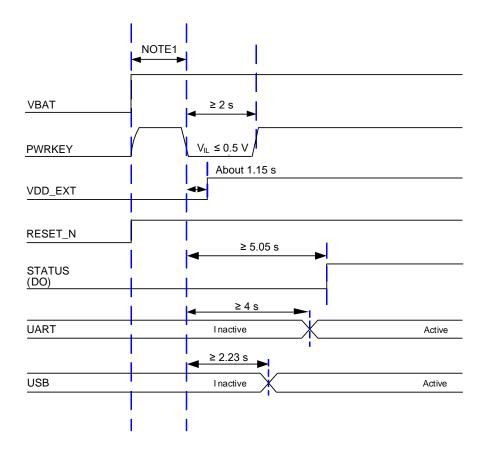


Figure 12: Turn-on Timing

NOTE

- 1. Ensure the voltage of VBAT is stable for at least 30 ms before driving the PWRKEY low.
- 2. When pulling down PWRKEY to GND by using a resistor, the module will not boot automatically after being turned off with the API function. In this case, it is necessary to forcibly disconnect the VBAT power supply and turn on the module again. Therefore, it is recommended to use a control circuit to control the PWRKEY to turn on/off the module instead of keeping the PWRKEY connected to GND.
- 3. Pay special attention to the following two power-on scenarios:
 - In the scenario where USB_VBUS is connected first (or has always been connected), VBAT is
 powered on later, and then PWRKEY is pulled down to start up the module, it is necessary to
 ensure that VBAT is powered on stably for at least 2 s before PERKEY is pulled down;
 - In the scenario where VBAT is powered on first (or has always been powered on), USB_VBUS
 is connected later, and then PWRKEY is pulled down to start up the module, it is necessary to
 ensure that USB_VBUS is connected for at least 2 s before PWRKEY is pulled down.

3.7. Turn Off

The following methods can be used to turn off the module:

- Use the PWRKEY pin.
- Use ql_power_down(). For more details, see document [6].

3.7.1. Turn Off with PWPKEY

Drive the PWRKEY pin low for at least 3 s and then release PWRKEY, and the module executes power-down procedure. The turn-off timing is illustrated in the following figure.

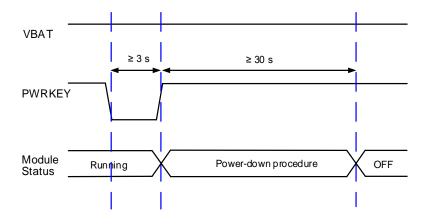


Figure 13: Turn-off Timing

3.7.2. Turn Off with ql_power_down()

It is also a safe way to use *ql_power_down()* to turn off the module, which is similar to turning off the module via the PWRKEY pin.

NOTE

- 1. To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after turning off the module with PWRKEY or API function can you cut off the power supply.
- 2. When being turned off, the module will log out of the network. The time for logging out relates to its network status. Thus, please pay attention to the shutdown time in your design because the actual shutdown time varies according to the network status.

3.8. Reset

The module can be reset by driving the RESET_N pin low for at least 100 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 11: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
				VBAT power domain.
				Active low.
RESET_N	17	DI	Resets the module	A test point is
				recommended to be
				reserved if unused.

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

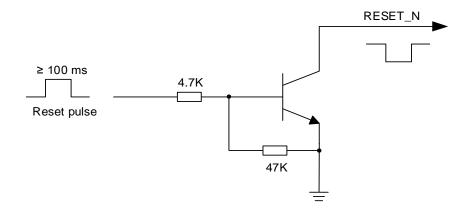


Figure 14: Reference Circuit of RESET_N by Using Driving Circuit

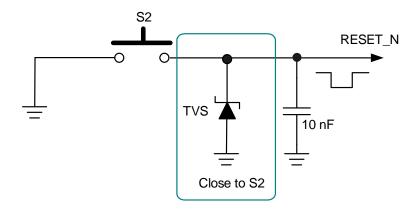


Figure 15: Reference Circuit of RESET_N by Using Button

The reset timing is illustrated in the following figure.

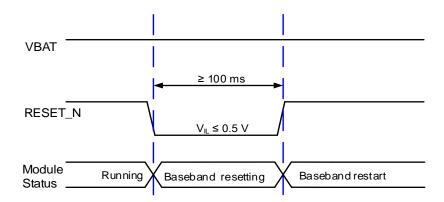


Figure 16: Timing of Resetting the Module

NOTE

- 1. Ensure that there is no large capacitance exceeding 10 nF on PWRKEY and RESET_N pins.
- 2. It is recommended to use RESET_N only when you fail to turn off the module with the *ql_power_down()* or PWRKEY pin.

4 Application Interfaces

4.1. Analog Audio Interfaces

The module provides one analog audio input and two analog audio output channels. The pin definition is shown in the following table.

Table 12: Pin Definition of Analog Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment
HP_L	123	AO	Headphone left channel output	
HP_R	124	AO	Headphone right channel output	-
HP_DET	125	DI	Headphone hot-plug detection	-
SPK_P	121	AO	Analog audio differential output (+)	If unused, keep
SPK_N	122	AO	Analog audio differential output (-)	them open.
MICBIAS	120	РО	Bias voltage output for microphone	-
MIC_P	126	Al	Microphone analog input (+)	-
MIC_N	119	Al	Microphone analog input (-)	-

- Al channels are differential input channels, which can be applied for input of microphone (usually an electret microphone is used).
- AO channels are differential output channels. SPK_P/_N can be applied for output of handset, earpiece and loudspeaker. HP_L/_R can be applied for the output of headphone. (The module has no built-in PA, the analog audio output channel SPK_P/_N can be directly used as earpiece, and if connected with an external PA, it can be used as loudspeaker.)

4.1.1. Audio Interface Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g., 10 pF and 33 pF) for filtering out RF interference, thus reducing TDD noise. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you need to discuss with your capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required. The filter capacitor on the PCB should be placed near the audio device or audio interface as close as possible, and the trace should be as short as possible. The filter capacitor should be passed before reaching other connection points.

To decrease signal interferences, RF antennas should be placed away from audio interfaces and audio traces. Power traces and audio traces should not be parallel, and they should be far away from each other.

The differential audio traces must be routed according to the differential signal layout rule.

4.1.2. Microphone Interface Design

The microphone interface reference circuit is shown in the following figure.

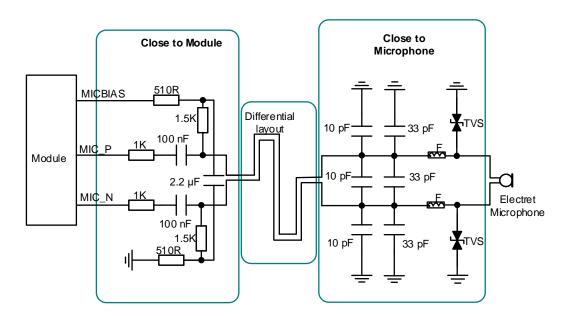


Figure 17: Reference Design for Microphone Interface

NOTE

Microphone channel is sensitive to ESD, so it is not recommended to remove the ESD components.

4.1.3. Earpiece Interface Design

The earpiece interface reference circuit is shown in the following figure:

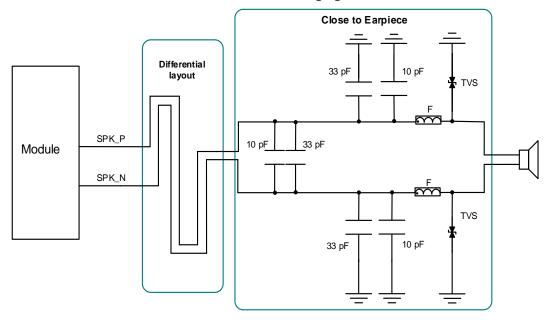


Figure 18: Reference Design for Earpiece Interface

4.1.4. Headphone Interface Design

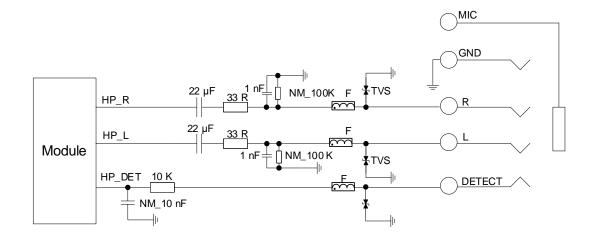


Figure 19: Reference Design for Headphone Interface

4.2. LCM Interface

The LCM interface of the module supports the LCD display with a maximum resolution of 320×240 pixel, DMA transmission, as well as 16-bit RGB565 and YUV formats.

Table 13: Pin Definition of LCM Interface

Pin Name	Pin No.	I/O	Description	Comment
LCD_TE	92	DI	LCD tearing effect	_
LCD_RST	107	DO	LCD reset	_
LCD_SEL	108	DO	Reserved	
LCD_CS	16	DO	LCD SPI chip select	1.8 V power domain. If unused, keep them
LCD_SPI_CLK	105	DO	LCD SPI clock	open.
LCD_SPI_RS	106	DO	LCD SPI register select	
LCD_SPI_DOUT	116	DIO	LCD SPI data	
LCD_ISINK	109	PI	Sink current input. Backlight adjustment	Imax = 200 mA. It is driven by the current sink, connected to the cathode of the backlight, and the brightness can be adjusted with current control.

NOTE

- The recommended value of LCD digital power LCD_VDDIO should to be designed as Vnom = 1.8 V
 200 mA.
- 2. The recommended value of LCD analog power LCD_AVDD should be designed as Vnom = 2.8 V @ 200 mA.

4.3. Camera Interface

The module provides one camera interface supporting cameras up to 0.3 MP and supports SPI two-data-line data transmission.

Table 14: Pin Definition of Camera Interface

Pin Name	Pin No.	I/O	Description	Comment
CAM_I2C_SCL	103	OD	Camera I2C clock	Pull each of them up to 1.8 V power
CAM_I2C_SDA	114	OD	Camera I2C data	domain with an external resistor. If unused, keep them open.
CAM_MCLK	95	DO	Camera master clock	_
CAM_SPI_CLK	78	DI	Camera SPI clock	
CAM_SPI_DATA0	97	DI	Camera SPI data bit 0	1.8 V power domain.
CAM_SPI_DATA1	98	DI	Camera SPI data bit 1	If unused, keep them open.
CAM_PWDN	115	DO	Camera power down	_
CAM_RST	111	DO	Camera reset	
CAM_VDD	94	РО	Camera analog power supply	Power supply of camera.
CAM_VDDIO	93	РО	Camera digital power supply	If unused, keep them open.

NOTE

If the camera interface is not required, pins 103 and 114 can be used as an I2C interface to connect other peripherals.

4.4. External Flash Interface

The module supports connection to an external flash chip, and the external flash interface is multiplexed from other pins. Pin definition is detailed in the figure below.

Table 15: Pin Definition of the Multiplexed External Flash Interface

Pin Name	Pin No.	Multiplex Function	I/O	DC Characteristics	Description
PCM_SYNC	5	SPI_FLASH1_CS	DO	Volmax = 0.45 V	External flash chip select
PCM_CLK	4	SPI_FLASH1_CLK	DO	Vон min = 1.35 V	External flash clock
PCM_DIN	6	SPI_FLASH1_SIO_0	DIO	$V_{IL}min = -0.3 V$	External flash data bit 0
PCM_DOUT	7	SPI_FLASH1_SIO_1	DIO	V_{IL} max = 0.6 V V_{IH} min = 1.26 V	External flash data bit 1
PSM_IND	1	SPI_FLASH1_SIO_2	DIO	V _{IH} max = 2.0 V - V _{OI} max = 0.45 V	External flash data bit 2
STATUS	20	SPI_FLASH1_SIO_3	DIO	V_{OH} min = 1.35 V	External flash data bit 3

Pins 4–7, 1, 20 can be multiplexed into a set of dedicated SPI for connecting external 6-wire NOR flash or NAND flash. The difference between them is as follows.

- When the dedicated SPI is used for connecting external NOR flash, it supports file system, wear leveling, FOTA upgrade and preset files. It can be used only for storage purpose and cannot be used to run code.
- When the dedicated SPI is used for connecting external NAND flash, it supports basic flash
 operations such as read, write and erase, file systems and wear leveling. It does not support FOTA
 upgrade and preset files. It can be used only for storage purpose and cannot be used to run code.

See document [7] for the design details of the two interface circuits.

NOTE

- 1. Pins 4–7 can also be multiplexed into a general SPI for connecting external 4-wire flash and other peripherals.
- For GPIO configuration, see document [1].

4.5. SD Card Interface

The module provides an SD card interface compliant with SD 2.0 specification. The SD card interface is multiplexed from other pins of the module. Pin definition is detailed in the figure below.

Table 16: Pin Definition of the Multiplexed SD Card Interface

Pin Name	Pin No.	Multiplex Function	I/O	Description	Comment
SD_CLK	110	-	DO	SD card clock	
MAIN_DCD	38	SDIO1_CMD	DIO	SDIO1 command	
MAIN_DTR	30	SDIO1_DATA0	DIO	SDIO1 data bit 0	3.2 V power domain.
MAIN_RI	39	SDIO1_DATA1	DIO	SDIO1 data bit 1	 If unused, keep them open.
W_DISABLE#	18	SDIO1_DATA2	DIO	SDIO1 data bit 2	_
AP_READY	19	SDIO1_DATA3	DIO	SDIO1 data bit 3	_
GPIO5	104	SD_DET	DI	SD card hot-plug detect	1.8 V power domain. If unused, keep it open.

The reference design circuit is shown in the figure below.

Figure 20: SD Card Interface Reference Design

To ensure good performance and reliability of the SD card, the following principles are recommended in the circuit design of the SD card interface.

- SD card needs to be powered externally. The voltage range of VDD_3V3 is 2.7–3.6 V and it should provide at least 800 mA current. The recommended voltage of VDD_3V3 is 3.2 V.
- To avoid the jitter of bus, it is necessary to reserve pull-up resistors R7–R11 on the SDIO signal traces. The recommended value is 4.7 k Ω and they are not mounted by default. The pull-up power supply can be the external power supply VDD_3V3 whose voltage is 3.2 V.
- To adjust signal quality, it is necessary to add resistors R1–R6 in series between the module and the SD card connector. The recommended value is 0 Ω for R1–R5 and 33 Ω for R6. The bypass capacitors C1–C6 are reserved and not mounted by default. The resistors and capacitors should be placed close to the module when placing the PCB.
- For good ESD protection, it is recommended to add a TVS to each SD card pin, and place them as close to the SD card connector as possible. The parasitic capacitance of TVS should be less than 15 pF.
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits and analog signals, as well as noise signals such as clock and DC-DC signals.
- Route SDIO signals with ground surrounded. The impedance of SDIO data trace should be kept at $50 \Omega \pm 10 \%$.
- Keep the space between SDIO signal traces and other signal traces greater than twice the trace width and ensure that the bus capacitance is less than 15 pF.
- Keep the trace length difference among SDIO1_CLK, SDIO1_DATA[0:3] and SDIO1_CMD less than 1 mm and the total routing length should be less than 50 mm.

NOTE

- 1. When using pins 18, 19, 30, 38, 39, and 110, please note that these pins will have a period of variable level state (not controllable by software) after the module is powered on: first high level (3 V) for 2 s and then low level (0 V) for 1.2 s, before they can be configured as 1.8 V input or output. Please evaluate whether the unstable output state on power-up meets your application design requirements based on the specific usage scenario and circuit design.
- 2. For GPIO configuration, see document [1].

4.6. USB Interface

The module provides an integrated Universal Serial Bus (USB) interface compliant with the USB 2.0 specification and supporting full-speed (12 Mbps) and high-speed (480 Mbps) modes. The USB interface can only serve as a slave device.

Table 17: Functions of USB Interface

Function		
Data transmission	$\sqrt{}$	
Software debugging	\checkmark	
Firmware upgrade	V	

The following table shows the pin definition of USB interface.

Table 18: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment	
USB_VBUS	8	AI	USB connection detect	3.5 V–5.25 V. A test point must be reserved.	
USB_DP	9	AIO	USB 2.0 differential data (+)	USB 2.0 compliant. Requires 90 Ω differential	
USB_DM	10	AIO	USB 2.0 differential data (-)	impedance. Test points must be reserved.	

For more details about the USB 2.0 specifications, visit http://www.usb.org/home.

Reserve test points for debugging and firmware upgrade in your designs. The following figure shows a reference circuit of USB interface.

Figure 21: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and your MCU to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R1 and R2) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. To ensure the signal integrity of USB data lines, L1, R1, and R2 must be placed close to the module, and resistors R1 and R2 should be placed close to each other. The extra stubs of trace must be as short as possible.

When designing the USB interface, you should follow the following principles to meet USB 2.0 specification.

- Route the USB signal traces as differential pairs in inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below. The impedance of USB differential trace is 90Ω .
- Do not route signal traces under or near crystals, oscillators, magnetic devices, and RF signal traces.
- Pay attention to the selection of the ESD component on the USB data line. Its stray capacitance should not exceed 2 pF and should be placed as close as possible to the USB connector.

4.7. USB_BOOT Interface

The module provides a USB_BOOT interface. You can pull up USB_BOOT to VDD_EXT before power-up and the module will enter download mode when it is turned on. In this mode, the module supports firmware upgrade over USB interface.

Table 19: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Force the module into emergency download mode	1.8 V power domain.Active high.A circuit that can set the module into emergency download mode should be reserved during design.A test point is recommended to be reserved.

The following figure shows a reference circuit of USB_BOOT interface.

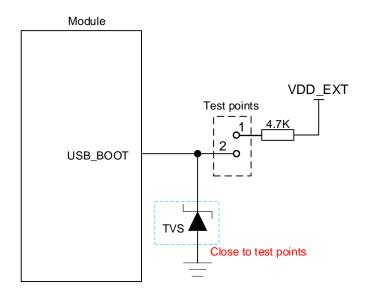


Figure 22: Reference Circuit of USB_BOOT Interface

4.8. (U)SIM Interfaces

The module provides two (U)SIM interfaces that supports Dual SIM Single Standby. The (U)SIM interfaces circuitry meets ETSI requirement and IMT-2000 specification. Either 1.8 V or 3.0 V (U)SIM card is supported.

Table 20: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_VDD	43	РО	(U)SIM1 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_DATA	45	DIO	(U)SIM1 card data	
USIM1_CLK	46	DO	(U)SIM1 card clock	
USIM1_RST	44	DO	(U)SIM1 card reset	
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM1_GND	47	-	Ground	Specified ground for (U)SIM1 card.
USIM2_VDD	87	РО	(U)SIM2 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified

				automatically by the module.
USIM2_DATA	86	DIO	(U)SIM2 card data	
USIM2_CLK	84	DO	(U)SIM2 card clock	
USIM2_RST	85	DO	(U)SIM2 card reset	
USIM2_DET	83	DI	(U)SIM2 card hot-plug detect	1.8 V power domain.A test point must be reserved for debugging.

The module supports (U)SIM card hot-plug via the USIM1_DET and USIM2_DET pins and both high- and low-level detections are supported. See *document [8]* for details on configuring the hot-plug detection function.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.

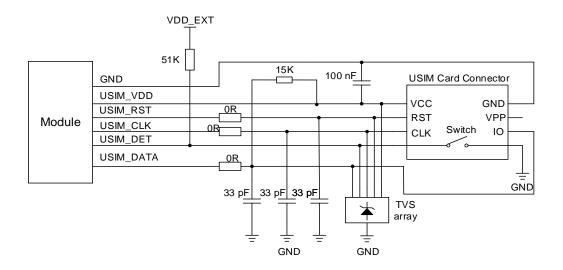


Figure 23: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

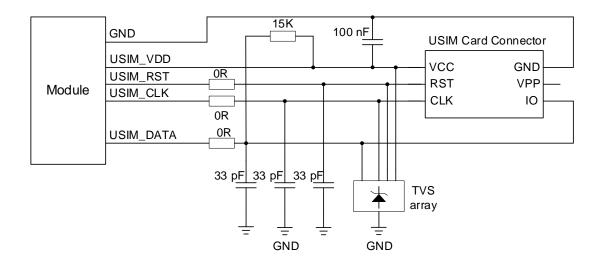


Figure 24: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, follow the criteria below in (U)SIM circuit design:

- Place (U)SIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.
- Keep (U)SIM signals away from RF and VBAT traces.
- Ensure the bypass capacitor between USIM_VDD and GND does not exceed 1 μF, and the capacitor should be close to the (U)SIM card connector.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- To offer good ESD protection, it is recommended to add a TVS array of which the parasitic capacitance should be less than 15 pF. Add 0 Ω resistors in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors are used for filtering interference. Additionally, keep the (U)SIM peripheral circuit close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

4.9. PCM and I2C Interfaces

The module provides one pulse code modulation (PCM) interface and one I2C interface. The PCM interface only supports slave mode; therefore, the clock signal of the codec IC needs to be provided externally.

PCM interface supports the short frame mode. In short frame mode, PCM_CLK = the number of channels \times PCM_SYNC \times 16 bit, where the number of channels supports 1–4 channels, but the module will only take the data on the first channel; PCM_SYNC is equal to the audio sampling rate, which supports 8–44.1 kHz.

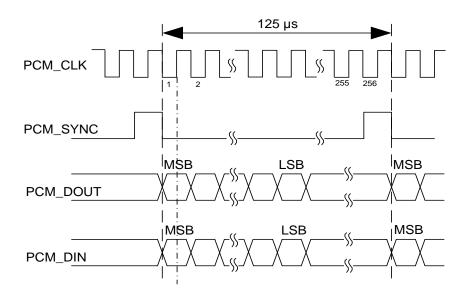


Figure 23: Timing of PCM Mode

NOTE

The clocks of PCM_SYNC and PCM_CLK are provided by the external codec IC, but the provided PCM_SYNC frequency must be equal to the sampling frequency of the audio file played by the module.

Table 21: Pin Definition of I2C and PCM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
I2C_SCL	40	OD	I2C serial clock	1.8 V power domain. They need to be pulled up to 1.8 V
I2C_SDA	41	OD	I2C serial data	externally. If unused, keep them open.
PCM_DIN	6	DI	PCM data input	
PCM_DOUT	7	DO	PCM data output	1.8 V power domain.
PCM_SYNC	5	DI	PCM data frame sync	If unused, keep them open.Supports slave mode only.
PCM_CLK	4	DI	PCM clock	

The following figure shows a reference design of I2C and PCM interfaces with an external codec IC.

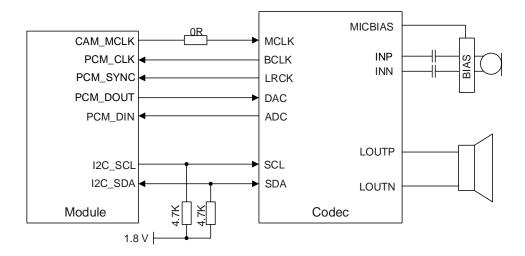


Figure 25: Reference Circuit of I2C and PCM Application with Audio Codec

NOTE

- 1. It is recommended to reserve a termination resistor and a filter capacitor on the PCM traces (especially on CAM_MCLK and PCM_CLK traces).
- 2. The I2C interface supports simultaneous connection of multiple peripherals except for codec IC. In other words, if a codec IC has been mounted on the I2C bus, no other peripherals can be mounted; if there is no codec IC on the bus, multiple peripherals can be mounted.

4.10. UART Interfaces

The module provides three UART interfaces: main UART, debug UART, and auxiliary UART.

- Main UART interface supports baud rates 4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, and 921600 bps, and the default is 115200 bps. It supports RTS and CTS hardware flow control. This interface is used for data transmission.
- Debug UART interface supports 921600 bps baud rate. It is used for log output. It cannot be used as a general-purpose UART.
- Auxiliary UART interface supports the same baud rates as the main UART interface.

Table 22: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
MAIN_CTS	36	DO	Clear to send signal from the module	Connect to MCU's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module	Connect to MCU's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_RXD	34	DI	Main UART receive	1.8 V power domain. If unused, keep them open.
MAIN_TXD	35	DO	Main UART transmit	

Table 23: Pin Definition of Auxiliary UART Interface

Pin Name	Pin No.	I/O	Description	Comment	
AUX_TXD	27	DO	Auxiliary UART transmit	1.8 V power domain.	
AUX_RXD	28	DI	Auxiliary UART receive	If unused, keep them open.	

Table 24: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_RXD	22	DI	Debug UART receive	1.8 V power domain.
DBG_TXD	23	DO	Debug UART transmit	Test points must be reserved for debugging.

The module provides a 1.8 V UART interface. A level-shifting circuit should be used if the application is equipped with a 3.3 V UART interface. A voltage-level translator TXS0104EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.

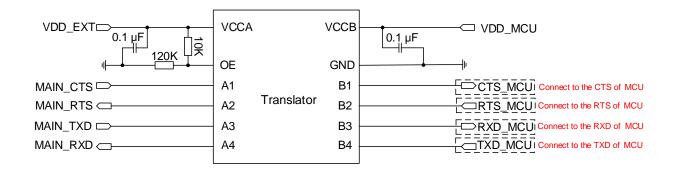


Figure 26: Reference Circuit with Voltage-level Translator

Please visit http://www.ti.com for more information.

Another example with transistor circuit is shown as follows. For the design of circuits in dotted lines, see that shown in solid lines, but pay attention to the direction of connection.

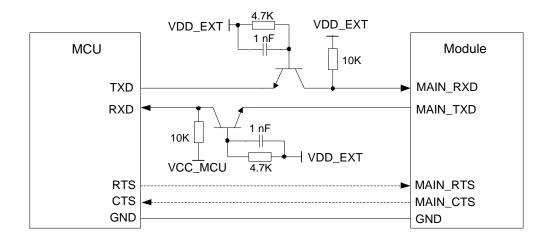


Figure 27: Reference Circuit with Transistor Circuit

NOTE

- 1. Transistor circuit is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module's CTS is connected to the MCU's CTS, and the module's RTS is connected to the MCU's RTS.

4.11. ADC Interfaces

The module provides two analog-to-digital converter (ADC) interfaces. To improve the measurement accuracy of ADC, surround the traces of ADC with ground.

Table 25: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ADC0	24	Al	Octobril company ADO interferen	If way and bean them are an
ADC1	2	Al	General-purpose ADC interfaces	ii unusea, keep them open.

Table 26: Characteristics of ADC Interfaces

Parameter	Min.	Тур.	Max.	Unit
ADC0 Voltage Range	0	-	VBAT	V
ADC1 Voltage Range	0	-	VBAT	V
ADC Resolution	-	12	-	bits

You can call *ql_adc_get_volt()* to read the voltage of an ADC interface. The mapping between *ql_adc_channel_id* and an ADC channel is as follows. For more details, see *document [9]*.

Table 27: Mapping between q_adc_channel_id and ADC Channel

ql_adc_channel_id	ADC Channel
QL_ADC0_CHANNEL	ADC0
QL_ADC1_CHANNEL	ADC1

NOTE

- 1. The input voltage of ADC should not exceed its corresponding voltage range.
- 2. Do not supply any voltage to ADC pins when VBAT is removed.
- 3. Considering the difference of ADC voltage range among Quectel modules, when it is necessary to use ADC pins, it is strongly recommended to reserve the voltage divider circuit for better compatibility with other Quectel modules. The resistance of the divider must be less than 100 k Ω ,

otherwise the measurement accuracy of the ADC will be significantly reduced. When the divider circuit is not used, the ADC pins require 1 $k\Omega$ resistors in series.

4.12. SPI

The module provides an SPI that only supports master mode. It has a working voltage of 1.8 V and a maximum clock frequency of 25 MHz.

Table 28: Pin Definition of SPI

Pin Name	Pin No.	I/O	Description	Comment
SPI_CLK	26	DO	SPI clock	1.8 V power domain.
SPI_CS	25	DO	SPI chip select	If unused, keep them
SPI_DIN	88	DI	SPI data input	open. Supports master mode
SPI_DOUT	64	DO	SPI data output	only.

NOTE

- 1. When the general 4-wire SPI is used for connecting external NOR flash, it supports basic flash operations such as read, write and erase, file systems, wear leveling, FOTA upgrade and preset files. It can be used only for storage purpose and cannot be used to run code.
- 2. When the general 4-wire SPI is used for connecting external NAND flash, it supports basic flash operations such as read, write and erase, file systems and wear leveling. It does not support FOTA upgrade and preset files. It can be used only for storage purpose and cannot be used to run code.

4.13. Indication Signals

The module provides two indication pins STATUS and NET_STATUS, which are mainly used for driving external indicators. The following tables describe pin definition and working states in different network status. See *led_cfg-demo.c* in the CSDK for details.

Table 29: Pin Definition of Indication Signals

Pin Name	Pin No.	I/O	Description	Comment
STATUS	20	DO	Indicates the module's operation status	1.8 V power domain.
NET_STATUS	21	DO	Indicates the module's network activity status	If unused, keep them open.

Table 30: Working States of Indication Pins

Pin Name	State	Network Status
STATUS	Always high	Power on
31A103	Always low	Power off
NET_STATUS	Flicker slowly (200 ms high/1800 ms low)	Network searching
	Flicker quickly (234 ms high/266 ms low)	Registered on network and idle
	Flicker rapidly (63 ms high /62 ms low)	Data transfer is ongoing
	Always high	Voice calling

The reference circuits are shown as follows.

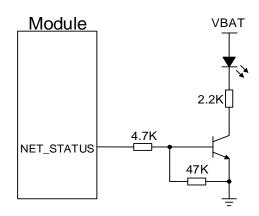


Figure 28: Reference Circuit of NET_STATUS

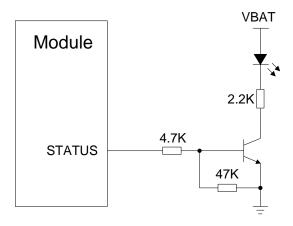


Figure 29: Reference Circuit of STATUS

5 Antenna Interfaces

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

The module provides a main antenna interface and a Bluetooth/Wi-Fi Scan antenna interface.

5.1. Main Antenna and Bluetooth/Wi-Fi Scan Antenna Interfaces

5.1.1. Pin Definition

Table 31: Pin Definition of RF Antennas

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	60	AIO	Main antenna interface	50 Ω characteristic impedance.
ANT_BT/WIFI_SCAN	56	AIO	The shared interface for Bluetooth and Wi-Fi Scan	Bluetooth and Wi-Fi Scan cannot be used simultaneously. Wi-Fi Scan only supports receiving. 50 Ω characteristic impedance. If unused, keep it open.

5.1.2. Operating Frequency

Table 32: Operating Frequency of EG915U-CN (Unit: MHz)

Operating Frequency	Transmit	Receive
EGSM900	880–915	925–960
DCS1800	1710–1785	1805–1880
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894
LTE-FDD B8	880–915	925–960
LTE-TDD B34	2010–2025	2010–2025
LTE-TDD B38	2570–2620	2570–2620
LTE-TDD B39	1880–1920	1880–1920
LTE-TDD B40	2300–2400	2300–2400
LTE-TDD B41	2535–2675	2535–2675

Table 33: Operating Frequency of EG915U-EU (Unit: MHz)

Operating Frequency	Transmit	Receive
GSM850	824–849	869–894
PCS1900	1850–1910	1930–1990
EGSM900	880–915	925–960
DCS1800	1710–1785	1805–1880
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894

LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B20	832–862	791–821
LTE-FDD B28	703–748	758–803

Table 34: Operating Frequency of EG915U-LA (Unit: MHz)

Operating Frequency	Transmit	Receive
GSM850	824–849	869–894
PCS1900	1850–1910	1930–1990
EGSM900	880–915	925–960
DCS1800	1710–1785	1805–1880
LTE-FDD B2	1850–1910	1930–1990
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B28	703–748	758–803
LTE-FDD B66	1710–1780	2110–2180

NOTE

Only EG915U-CN supports LTE-TDD.

5.1.3. Reference Design of Antenna Interfaces

A reference design of ANT_MAIN pin and ANT_BT/WIFI_SACN pin are shown as below. A π -type matching circuit and ESD protection device should be reserved for better RF performance. The capacitors are not mounted by default.

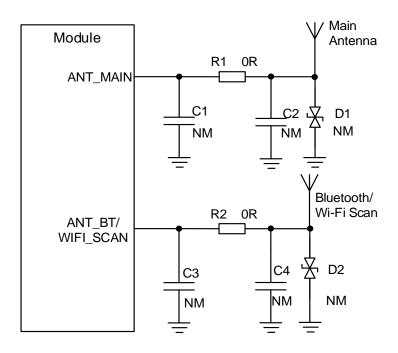


Figure 30: Reference Circuit of RF Antennas

NOTE

- To improve receiver sensitivity, ensure that the clearance among antennas is appropriate.
- 2. Place the π -type matching components (R1, C1, C2 and R2, C3, C4) to antennas as close as possible.

5.1.4. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between the RF traces and the ground (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

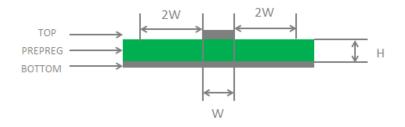


Figure 31: Microstrip Design on a 2-layer PCB

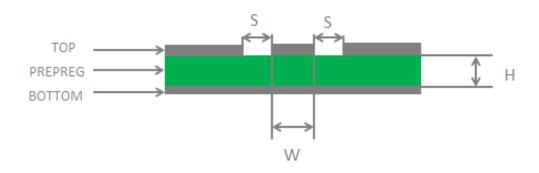


Figure 32: Coplanar Waveguide Design on a 2-layer PCB

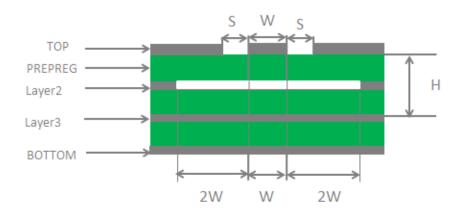


Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

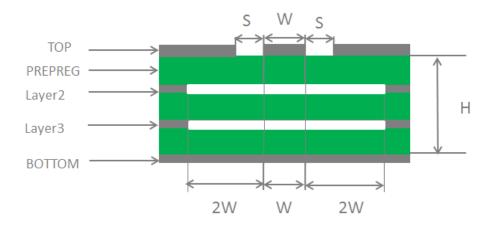


Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [10].

5.2. Antenna Installation

5.2.1. Antenna Design Requirements

Table 35: Antenna Design Requirements

Туре	Requirement
	VSWR: ≤ 2
	Efficiency: > 30 %
	Max. input power: 50 W
GSM/LTE	Input impedance: 50 Ω
GSIVI/LI E	Cable insertion loss:
	< 1 dB: LB (< 1 GHz)
	< 1.5 dB: MB (1–2.3 GHz)
	< 2 dB: HB (> 2.3 GHz)

5.2.2. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT receptacle provided by Hirose.

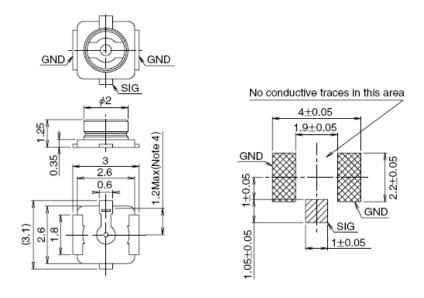


Figure 35: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	86	2 4	82 3.4	8. 4	5 5 88 - 5
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 36: Specifications of Mated Plugs

The following figure describes the space factor of mated connector.

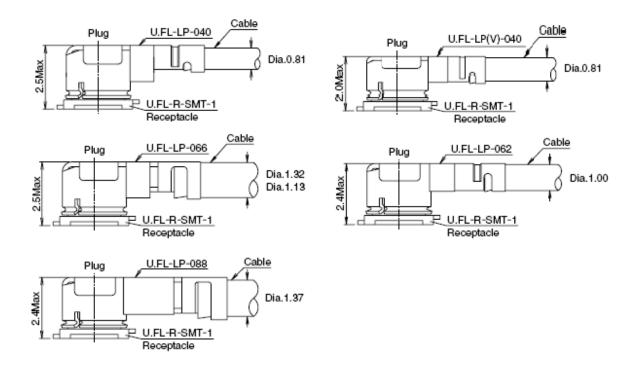


Figure 37: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit http://hirose.com.

6 Electrical Characteristics & Reliability

6.1. Absolute Maximum Ratings

Table 36: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	6.0	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	-	1	А
Peak Current of VBAT_RF	-	2.5	A
Voltage on Digital Pins	-0.3	2.3	V
Voltage at ADC0	0	VBAT	V
Voltage at ADC1	0	VBAT	V

6.2. Power Supply Ratings

Table 37: Power Supply Ratings

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	the actual input voltages must be kept between the minimum and maximum values.		3.8	4.3	V
	Voltage drop during transmitting burst	Maximum power control level	-	-	400	mV
I _{VBAT}	Peak supply current	Maximum power control level	-	1.7	2.5	А

USB_VBUS	USB connection detection	-	3.5	5.0	5.25	V

6.3. Power Consumption

Table 38: EG915U-CN Current Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	32	μA
	Minimum Functionality Mode (USB disconnected)	1.0	
	Minimum Functionality Mode (USB connected)	2.2	_
	Airplane Mode (USB disconnected)	1.0	_
	Airplane Mode (USB connected)	2.3	
	EGSM900 @ DRX = 2 (USB disconnected)	2.0	_
	EGSM900 @ DRX = 5 (USB disconnected)	1.5	_
	EGSM900 @ DRX = 5 (USB connected)	2.7	_
	EGSM900 @ DRX = 9 (USB disconnected)	1.3	_
Class state	DCS1800 @ DRX = 2 (USB disconnected)	2.0	Λ
Sleep state	DCS1800 @ DRX = 5 (USB disconnected)	1.5	– mA
	DCS1800 @ DRX = 5 (USB connected)	2.7	_
	DCS1800 @ DRX = 9 (USB disconnected)	1.3	_
	LTE-FDD @ PF = 32 (USB disconnected)	2.5	_
	LTE-FDD @ PF = 64 (USB disconnected)	1.8	_
	LTE-FDD @ PF = 64 (USB connected)	3.0	_
	LTE-FDD @ PF = 128 (USB disconnected)	1.4	_
	LTE-FDD @ PF = 256 (USB disconnected)		_
	LTE-TDD @ PF = 32 (USB disconnected)	2.5	_

	LTE-TDD @ PF = 64 (USB disconnected)	1.8	
	LTE-TDD @ PF = 64 (USB connected)	3.1	
	LTE-TDD @ PF = 128 (USB disconnected)	1.4	
	LTE-TDD @ PF = 256 (USB disconnected)	1.2	
	EGSM900 @ DRX = 5 (USB disconnected)	12.6	
	EGSM900 @ DRX = 5 (USB connected)	28.6	
	LTE-FDD @ PF = 64 (USB disconnected)	13.0	_
Idle state	LTE-FDD @ PF = 64 (USB connected)	29.0	— mA
	LTE-TDD @ PF = 64 (USB disconnected)	13.0	_
	LTE-TDD @ PF = 64 (USB connected)	29.0	
	LTE-FDD B1 @ 22.94 dBm	587	
LTE data transfer	LTE-FDD B3 @ 23.01 dBm	615	
	LTE-FDD B5 @ 23.54 dBm	527	
	LTE-FDD B8 @ 22.83 dBm	564	
	LTE-TDD B34 @ 23.14 dBm	280	mA
	LTE-TDD B38 @ 23.34 dBm	326	
	LTE-TDD B39 @ 23.25 dBm	247	
	LTE-TDD B40 @ 23.81 dBm	297	
	LTE-TDD B41 @ 23.06 dBm	311	
	EGSM900 4DL/1UL @ 32.87 dBm	234	
GPRS data transfer	EGSM900 3DL/2UL @ 30.86 dBm	348	_
	EGSM900 2DL/3UL @ 28.90 dBm	401	_
	EGSM900 1DL/4UL @ 26.74 dBm	415	mA
	DCS1800 4DL/1UL @ 30.13 dBm	160	
	DCS1800 3DL/2UL @ 28.12 dBm	221	
	DCS1800 2DL/3UL @ 26.01 dBm	249	

	DCS1800 1DL/4UL @ 23.94 dBm	258	
	EGSM900 PCL = 5 @ 32.89 dBm	256	
	EGSM900 PCL = 12 @ 19.41 dBm	101	
GSM voice call	EGSM900 PCL = 19 @ 6.33 dBm	72	
GSIVI VOICE CAII	DCS1800 PCL = 0 @ 29.99 dBm	178	— mA —
	DCS1800 PCL = 7 @ 16.09 dBm	84	
	DCS1800 PCL = 15 @ 1.26 dBm	67	
	EGSM900 PCL = 5 @ 32.83 dBm	1.78	_
	EGSM900 PCL = 12 @ 18.94 dBm	0.45	
GSM voice call (Max. Current)	EGSM900 PCL = 19 @ 6.18 dBm	0.19	— А
	DCS1800 PCL = 0 @ 30.12 dBm	1.11	
	DCS1800 PCL = 7 @ 15.97 dBm	0.30	
	DCS1800 PCL = 15 @ 0.28 dBm	0.15	

Table 39: EG915U-EU Current Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	32	μΑ
	Minimum Functionality Mode (USB disconnected)	1.1	
	Minimum Functionality Mode (USB connected)	2.3	
	Airplane Mode (USB disconnected)	1.2	
Sleep state	Airplane Mode (USB connected)	2.4	
	EGSM900 @ DRX = 2 (USB disconnected)	2.1	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.8	
	EGSM900 @ DRX = 5 (USB connected)	2.8	
	EGSM900 @ DRX = 9 (USB disconnected)	1.5	_
	DCS1800 @ DRX = 2 (USB disconnected)	2.1	

	DCS1800 @ DRX = 5 (USB disconnected)	1.8	
	DCS1800 @ DRX = 5 (USB connected)	2.7	_
	DCS1800 @ DRX = 9 (USB disconnected)	1.5	_
	LTE-FDD @ PF = 32 (USB disconnected)	2.7	
	LTE-FDD @ PF = 64 (USB disconnected)	2.1	
	LTE-FDD @ PF = 64 (USB connected)	3.3	_
	LTE-FDD @ PF = 128 (USB disconnected)	1.6	
	LTE-FDD @ PF = 256 (USB disconnected)	1.5	
	EGSM900 @ DRX = 5 (USB disconnected)	12.5	
	EGSM900 @ DRX = 5 (USB connected)	28.1	_
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	12.5	─ mA
	LTE-FDD @ PF = 64 (USB connected)	28.1	
	LTE-FDD B1 @ 22.44 dBm	595	
	LTE-FDD B3 @ 22.74 dBm	657	
	LTE-FDD B5 @ 22.17 dBm	567	_
LTE data transfer	LTE-FDD B7 @ 22.01 dBm	774	mA
	LTE-FDD B8 @ 22.01 dBm	533	
	LTE-FDD B20 @ 22.92 dBm	522	
	LTE-FDD B28 @ 22.56 dBm	526	_
	GSM850 4DL/1UL @ 32.57 dBm	247	
	GSM850 3DL/2UL @ 30.53 dBm	365	
	GSM850 2DL/3UL @ 28.32 dBm	414	_
GPRS data transfer	GSM850 1DL/4UL @ 26.07 dBm	430	– mA
	EGSM900 4DL/1UL @ 32.13 dBm	234	
			_

	EGSM900 2DL/3UL @ 28.37 dBm	408	
	EGSM900 1DL/4UL @ 26.33 dBm	427	_
	DCS1800 4DL/1UL @ 29.42 dBm	155	
	DCS1800 3DL/2UL @ 27.95 dBm	227	
	DCS1800 2DL/3UL @ 25.89 dBm	253	
	DCS1800 1DL/4UL @ 23.79 dBm	259	_
	PCS1900 4DL/1UL @ 29.89 dBm	163	
	PCS1900 3DL/2UL @ 27.78 dBm	230	
	PCS1900 2DL/3UL @ 25.86 dBm	260	
	PCS1900 1DL/4UL @ 23.70 dBm	271	
	GSM850 PCL = 5 @ 32.62 dBm	256	
	GSM850 PCL = 12 @ 18.71 dBm	91	
	GSM850 PCL = 19 @ 5.04 dBm	60	
	EGSM900 PCL = 5 @ 32.11 dBm	249	
	EGSM900 PCL = 12 @ 18.76 dBm	100	
	EGSM900 PCL = 19 @ 5.30 dBm	69	
GSM voice call	DCS1800 PCL = 0 @ 29.43 dBm	171	— mA
	DCS1800 PCL = 7 @ 15.91 dBm	81	
	DCS1800 PCL = 15 @ 0.21 dBm	63	
	PCS1900 PCL = 0 @ 29.88 dBm	179	
	PCS1900 PCL = 7 @ 16.03 dBm	83	
	PCS1900 PCL = 15 @ 0.72 dBm	64	
	GSM850 PCL = 5 @ 32.82 dBm	1.88	
GSM voice call (Max. Current)	GSM850 PCL = 12 @ 19.08 dBm	0.46	A
(-	GSM850 PCL = 19 @ 6.12 dBm	0.19	

EGSM900 PCL = 5 @ 32.34 dBm	1.72
EGSM900 PCL = 12 @ 19.06 dBm	0.44
EGSM900 PCL = 19 @ 5.39 dBm	0.19
DCS1800 PCL = 0 @ 29.89 dBm	1.13
DCS1800 PCL = 7 @ 15.96 dBm	0.30
DCS1800 PCL = 15 @ 0.95 dBm	0.16
PCS1900 PCL = 0 @ 29.66 dBm	1.10
PCS1900 PCL = 7 @ 15.59 dBm	0.33
PCS1900 PCL = 15 @ 0.58 dBm	0.15

Table 40: EG915U-LA Current Consumption

Description	Condition	Тур.	Unit
OFF state	Power down	32	μΑ
	Minimum Functionality Mode (USB disconnected)	0.94	
	Minimum Functionality Mode (USB connected)	2.39	
	Airplane Mode (USB disconnected)	1.02	
	Airplane Mode (USB connected)	2.45	_
Sleep state	EGSM900 @ DRX = 2 (USB disconnected)	1.98	_
	EGSM900 @ DRX = 5 (USB disconnected)	1.41	_
	EGSM900 @ DRX = 5 (USB connected)	2.86	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.28	_
	DCS1800 @ DRX = 2 (USB disconnected)	1.95	_
	DCS1800 @ DRX = 5 (USB disconnected)	1.44	_
	DCS1800 @ DRX = 5 (USB connected)	2.85	
	DCS1800 @ DRX = 9 (USB disconnected)	1.25	
	LTE-FDD @ PF = 32 (USB disconnected)	2.55	_

	LTE-FDD @ PF = 64 (USB disconnected)	1.80	
	LTE-FDD @ PF = 64 (USB connected)	3.24	
	LTE-FDD @ PF = 128 (USB disconnected)	1.41	
	LTE-FDD @ PF = 256 (USB disconnected)	1.23	
	EGSM900 @ DRX = 5 (USB disconnected)	12.11	
Liller	EGSM900 @ DRX = 5 (USB connected)	27.26	
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	12.33	— mA
	LTE-FDD @ PF = 64 (USB connected)	27.65	
	LTE-FDD B2 @ 22.93 dBm	610	
	LTE-FDD B3 @ 23.27 dBm	641	
	LTE-FDD B4 @ 23.27 dBm	766	_
LTC data transfer	LTE-FDD B5 @ 22.84 dBm	608	A
LTE data transfer	LTE-FDD B7 @ 22.65 dBm	747	— mA
	LTE-FDD B8 @ 23.58 dBm	609	
	LTE-FDD B28 @ 23.75 dBm	587	
	LTE-FDD B66 @ 23.48 dBm	667	
	GSM850 4DL/1UL @ 32.47 dBm	241	
	GSM850 3DL/2UL @ 30.60 dBm	366	
	GSM850 2DL/3UL @ 28.53 dBm	422	
	GSM850 1DL/4UL @ 26.35 dBm	438	
	EGSM900 4DL/1UL @ 32.17 dBm	231	A
GPRS data transfer	EGSM900 3DL/2UL @ 30.60 dBm	359	— mA
	EGSM900 2DL/3UL @ 28.44 dBm	437	_
	EGSM900 1DL/4UL @ 26.44 dBm	437	_
	DCS1800 4DL/1UL @ 29.56 dBm	146	_
	DCS1800 3DL/2UL @ 28.80 dBm	233	_

	DCS1800 2DL/3UL @ 26.79 dBm	267	
	DCS1800 1DL/4UL @ 24.79 dBm	276	
	PCS1900 4DL/1UL @ 29.51 dBm	144	
	PCS1900 3DL/2UL @ 28.36 dBm	230	
	PCS1900 2DL/3UL @ 26.30 dBm	260	
	PCS1900 1DL/4UL @ 24.22 dBm	271	
	GSM850 PCL = 5 @ 32.82 dBm	288	
	GSM850 PCL = 12 @ 19.08 dBm	113	
	GSM850 PCL = 19 @ 6.12 dBm	80	
	EGSM900 PCL = 5 @ 32.34 dBm	261	
	EGSM900 PCL = 12 @ 19.06 dBm	112	_
GSM voice call	EGSM900 PCL = 19 @ 5.39 dBm	79	— mA
GSIVI VOICE CAII	DCS1800 PCL = 0 @ 29.89 dBm	187	— IIIA
	DCS1800 PCL = 7 @ 15.96 dBm	91	
	DCS1800 PCL = 15 @ 0.95 dBm	72	
	PCS1900 PCL = 0 @ 29.66 dBm	196	
	PCS1900 PCL = 7 @ 15.59 dBm	94	
	PCS1900 PCL = 15 @ 0.58 dBm	72	

6.4. Tx Power

Table 41: EG915U-CN RF Output Power

Frequency Band	Max. RF Output Power	Min. RF Output Power
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B5/B8	23 dBm ±2 dB	< -39 dBm

LTE-TDD B34/B38/B39/B40/B41 23 dBm ±2 dB < -39 dBm
--

Table 42: EG915U-EU RF Output Power

Frequency Band	Max. RF Output Power	Min. RF Output Power
GSM850/EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800/PCS1900	30 dBm ±2 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B5/B7/B8/B20/B28	23 dBm ±2 dB	< -39 dBm

Table 43: EG915U-LA RF Output Power

Frequency Bands	Max. RF Output Power	Min. RF Output Power
GSM850/EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800/PCS1900	30 dBm ±2 dB	0 dBm ±5 dB
LTE-FDD B2/B3/B4/B5/B7/B8/B28/B66	23 dBm ±2 dB	< -39 dBm

6.5. Rx Sensitivity

Table 44: EG915U-CN Conducted RF Receiver Sensitivity (Unit: dBm)

Fraguenov	Receiver Sensitivity (Typ.)	2CDD (SIMO)	
Frequency	Primary	3GPP (SIMO)	
EGSM900	-108.0	-102	
DCS1800	-107.5	-102	
LTE-FDD B1 (10 MHz)	-97.3	-96.3	
LTE-FDD B3 (10 MHz)	-98	-93.3	
LTE-FDD B5 (10 MHz)	-99	-94.3	
LTE-FDD B8 (10 MHz)	-99	-93.3	

LTE-TDD B34 (10 MHz)	-98	-96.3
LTE-TDD B38 (10 MHz)	-97.6	-96.3
LTE-TDD B39 (10 MHz)	-98.4	-96.3
LTE-TDD B40 (10 MHz)	-98.3	-96.3
LTE-TDD B41 (10 MHz)	-97	-94.3

Table 45: EG915U-EU Conducted RF Receiver Sensitivity (Unit: dBm)

Fraguesa	Receiver Sensitivity (Typ.)	AODD (OMO)	
Frequency	Primary	3GPP (SIMO)	
GSM850	-108	-102	
EGSM900	-106.5	-102	
DCS1800	-107.5	-102	
PCS1900	-107	-102	
LTE-FDD B1 (10 MHz)	-97	-96.3	
LTE-FDD B3 (10 MHz)	-98.3	-93.3	
LTE-FDD B5 (10 MHz)	-97.4	-94.3	
LTE-FDD B7 (10 MHz)	-96.1	-94.3	
LTE-FDD B8 (10 MHz)	-97	-93.3	
LTE-FDD B20 (10 MHz)	-98.3	-93.3	
LTE-FDD B28 (10 MHz)	-98.6	-94.8	

Table 46: EG915U-LA Conducted RF Receiver Sensitivity (Unit: dBm)

Francos	Receiving Sensitivity (Typ.)	2000 (CIMO)	
Frequency	Primary	3GPP (SIMO)	
GSM850	-108	-102	

EGSM900	-106.8	-102
DCS1800	-107.5	-102
PCS1900	-107.2	-102
LTE-FDD B2 (10 MHz)	-98.1	-94.3
LTE-FDD B3 (10 MHz)	-98.2	-93.3
LTE-FDD B4 (10 MHz)	-97.5	-96.3
LTE-FDD B5 (10 MHz)	-97.4	-94.3
LTE-FDD B7 (10 MHz)	-96.1	-94.3
LTE-FDD B8 (10 MHz)	-97.5	-93.3
LTE-FDD B28 (10 MHz)	-99.4	-93.3
LTE-FDD B66 (10 MHz)	-97.9	-95.8

6.6. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

The following table shows the electrostatics discharge characteristics of the module.

Table 47: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interface	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
All Antenna Interfaces	±4	±8	kV
Other Interfaces	±0.5	±1	kV

6.7. Operating and Storage Temperatures

Table 48: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ⁵	-35	+25	+75	°C
Extended Temperature Range ⁶	-40	+25	+85	°C
Storage Temperature Range	-40	+25	+90	°C

⁵ Within this range, the module's indicators comply with 3GPP specification requirements.

⁶ Within this range, the module retains the ability to establish and maintain functions such as voice, SMS, emergency call, etc., without any unrecoverable malfunction. Radio spectrum and radio network remain uninfluenced, whereas the value of one or more parameters, such as P_{out} , may decrease and fall below the range of the 3GPP specified tolerances. When the temperature returns to the normal operating temperature range, the module's indicators will comply with 3GPP specification requirements again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

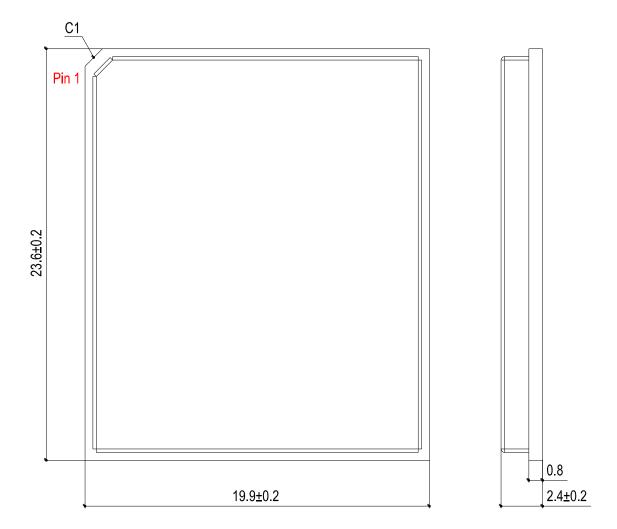
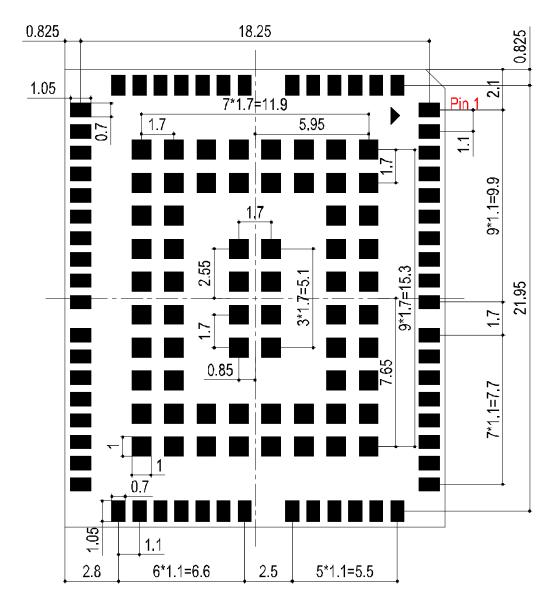



Figure 38: Module Top and Side Dimensions (Unit: mm)

Figure 39: Module Bottom Dimensions

NOTE

The package warpage level of the module conforms to the *JEITA ED-7306* standard.

7.2. Recommended Footprint

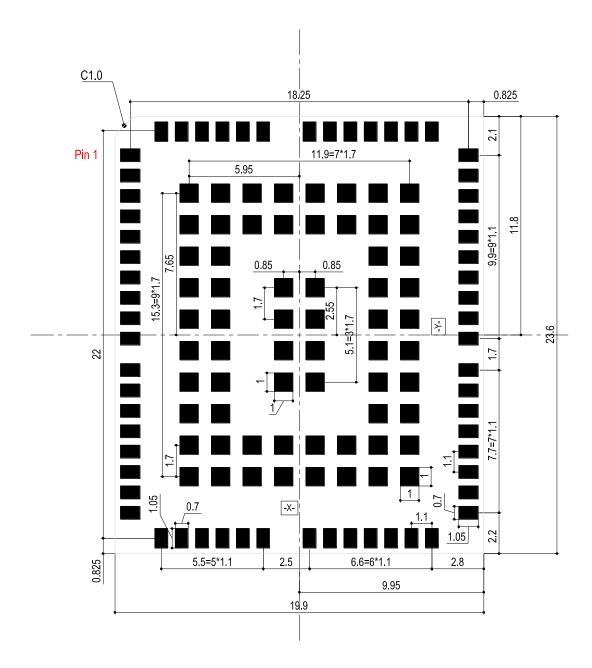


Figure 40: Recommended Footprint

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

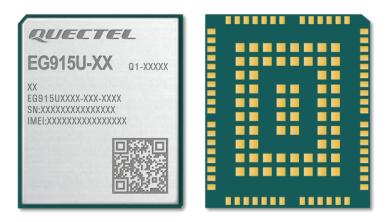


Figure 41: Top and Bottom Views

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

Module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. The storage life (in vacuum-sealed packaging) is 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ⁷ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - All modules must be soldered to PCB within 24 hours after the baking, otherwise it should be put
 in a dry environment such as in a dry cabinet.

⁷ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [11]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

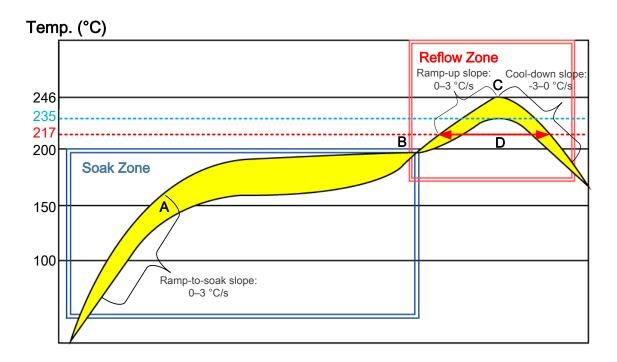


Figure 42: Recommended Reflow Soldering Thermal Profile

Table 49: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0-3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0-3 °C/s
Reflow time (D: over 217 °C)	40-70 s
Max. temperature	235–246 °C
Cool-down slope	-3–0 °C/s
Reflow Cycle	
Max. reflow cycle	1

NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g., selective soldering, ultrasonic soldering) that is not mentioned in *document* [11].

8.3. Packaging Specification

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts carrier tape packaging and details are as follow:

8.3.1. Carrier Tape

Dimension details are as follow:

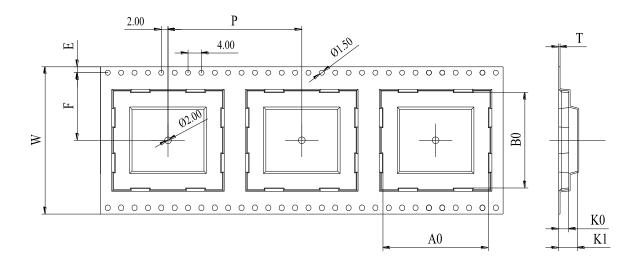


Figure 43: Carrier Tape Dimension Drawing

Table 50: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	Α0	В0	K0	K1	F	E
44	32	0.35	20.2	24	3.15	6.65	20.2	1.75

8.3.2. Plastic Reel

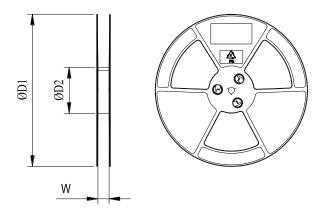
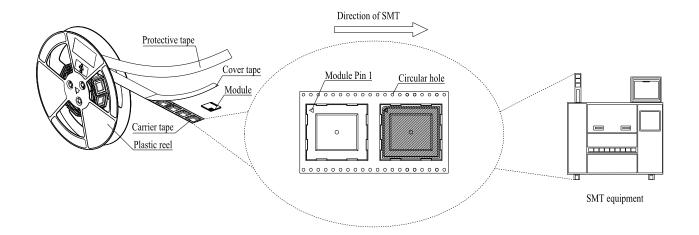



Figure 44: Plastic Reel Dimension Drawing

Table 51: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5

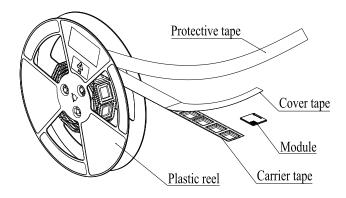
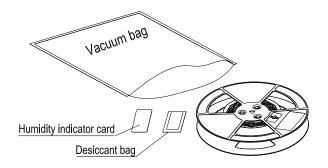
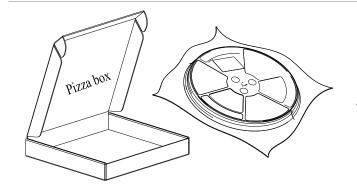

8.3.3. Mounting Direction

Figure 45: Mounting Direction




8.3.4. Packaging Process

Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. 1 plastic reel can load 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, vacuumize it.

Place the vacuum-packed plastic reel into the pizza box.

Put 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

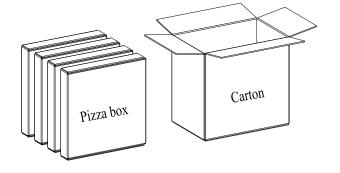


Figure 46: Packaging Process

9 Appendix References

Table 52: Related Documents

Document Name
[1] Quectel_EG915U_Series_QuecOpen_GPIO_Configuration
[2] Quectel_LTE_OPEN_EVB_User_Guide
[3] Quectel_EC200U&EG91xU_Series_QuecOpen(SDK)_Device_Management_API_Reference_ Manual
[4] Quectel_EC200U&EG91xU_Series_QuecOpen(SDK)_Low_Power_Consumption_API_Reference_Manual
[5] Quectel_EC200U&EG91xU_Series_QuecOpen(SDK)_PSM_Application_Note
[6] Quectel_EC200U&EG91xU_Series_QuecOpen(SDK)_Booting&Shutdown_Development_Guide
[7] Quectel_EG915U_Series_QuecOpen_Reference_Design
[8] Quectel_EC200U&EG91xU_Series_QuecOpen(SDK)_(U)SIM_API_Reference_Manual
[9] Quectel_EC200U&EG91xU_Series_QuecOpen(SDK)_ADC_Development_Guide
[10] Quectel_RF_Layout_Application_Note
[11] Quectel_Module_SMT_User_Guide

Table 53: Terms and Abbreviations

Description
Analog-to-Digital Converter
Adaptive Multi-Rate Wideband
Application Processor
bit(s) per second
Challenge Handshake Authentication Protocol

CS	Coding Scheme
CTS	Clear To Send
DFOTA	Delta Firmware Upgrade Over The Air
DL	Downlink
DMA	Direct Memory Access
DRX	Discontinuous Reception
DRX	Diversity Receive
DTR	Data Terminal Ready
EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
FDD	Frequency Division Duplex
GRFC	General RF Control
НВ	High Band
HR	Half Rate
I/O	Input/Output
LB	Low Band
LGA	Land Grid Array
LTE	Long Term Evolution
MB	Middle Band
MCU	Microcontroller Unit
MT	Mobile Terminated
ОТА	Over-the-air Programming
PA	Power Amplifier
PAP	Password Authentication Protocol
PC	Personal Computer

PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDU	Protocol Data Unit
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
R&D	Research and Development
RI	Ring Indicator
RF	Radio Frequency
Rx	Receive
SIMO	Single Input Multiple Output
SMS	Short Message Service
SPI	Serial Peripheral Interface
TDD	Time Division Duplexing
Тх	Transmit
UART	Universal Asynchronous Receiver/Transmitter
UL	Uplink
USB	Universal Serial Bus
(U)SIM	Universal Subscriber Identity Module
VBAT	Voltage at Battery (Pin)
Vmax	Maximum Voltage Value
Vnom	Nominal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum High-level Input Voltage
V _{IH} min	Minimum High-level Input Voltage
V _{IL} max	Maximum Low-level Input Voltage

V _{IL} min	Minimum Low-level Input Voltage
V _{OH} max	Maximum High-level Output Voltage
V _{OH} min	Minimum High-level Output Voltage
V _{OL} max	Maximum Low-level Output Voltage
V _{OL} min	Minimum Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio