

# EG912U-GL QuecOpen Hardware Design

#### **LTE Standard Module Series**

Version: 1.0

Date: 2023-08-17

Status: Released



At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

#### Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

#### Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

#### For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

# **Legal Notices**

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

# **Use and Disclosure Restrictions**

# **License Agreements**

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

# Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.



#### **Trademarks**

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

## **Third-Party Rights**

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

# **Privacy Policy**

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

# **Disclaimer**

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.



# **Safety Information**

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.



Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.



Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.



Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.



Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.



The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.



In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.



# **About the Document**

# **Revision History**

| Version | Date       | Author                                | Description              |
|---------|------------|---------------------------------------|--------------------------|
| -       | 2023-02-18 | Anla HUANG/<br>Nick QIN/<br>Loft XU   | Creation of the document |
| 1.0     | 2023-08-17 | Phoebe FU/<br>Chris LIANG/<br>Loft XU | First official release   |



# **Contents**

| Sa  | afety Information                                       | 3  |
|-----|---------------------------------------------------------|----|
| Ab  | bout the Document                                       | 4  |
| Co  | Contents                                                | 5  |
| Та  | able Index                                              | 8  |
| Fiç | igure Index                                             | 10 |
| 1   | Introduction                                            | 12 |
| •   | 1.1. Special Marks                                      |    |
| 2   | Product Overview                                        | 13 |
|     | 2.1. Frequency Bands and Functions                      | 14 |
|     | 2.2. Key Features                                       | 14 |
|     | 2.3. Functional Diagram                                 | 16 |
|     | 2.4. Pin Assignment                                     | 18 |
|     | 2.5. Pin Description                                    | 19 |
|     | 2.6. EVB Kit                                            | 26 |
| 3   | Operating Characteristics                               | 27 |
|     | 3.1. Operating Modes                                    | 27 |
|     | 3.2. Sleep Mode                                         | 28 |
|     | 3.2.1. USB Application with USB Suspend/Resume Function | 28 |
|     | 3.2.2. USB Application Without USB Suspend Function     |    |
|     | 3.3. Airplane Mode                                      | 30 |
|     | 3.4. PSM                                                | 30 |
|     | 3.5. Power Supply                                       | 31 |
|     | 3.5.1. Power Supply Pins                                | 31 |
|     | 3.5.2. Reference Design for Power Supply                | 31 |
|     | 3.5.3. Voltage Stability Requirements                   | 32 |
|     | 3.6. Turn On                                            | 33 |
|     | 3.6.1. Turn On with PWPKEY                              | 33 |
|     | 3.7. Turn Off                                           | 36 |
|     | 3.7.1. Turn Off with PWPKEY                             | 36 |
|     | 3.7.2. Turn Off with ql_power_down()                    | 37 |
|     | 3.8. Reset                                              | 37 |
| 4   | Application Interfaces                                  | 40 |
|     | 4.1. USB Interface                                      | 40 |
|     | 4.2. USB_BOOT                                           |    |
|     | 4.3. (U)SIM Interfaces                                  | 42 |
|     | 4.4. UART                                               |    |
|     | 4.5. PCM and I2C Interfaces                             | 47 |
|     | 4.6. Analog Audio Interfaces                            |    |
|     | 4.6.1. Microphone Interface Design                      | 49 |



|   | 4.6     | I.6.2. Earpiece Interface Design              | 50 |
|---|---------|-----------------------------------------------|----|
|   | 4.6     | I.6.3. Headphone Interface Design             | 51 |
|   | 4.6     | I.6.4. Audio Interfaces Design Considerations | 51 |
|   | 4.7.    | ADC Interfaces                                | 52 |
|   | 4.8.    | SPI                                           | 53 |
|   | 4.9.    | External Flash Interface                      | 53 |
|   | 4.10.   | LCM Interface                                 | 54 |
|   | 4.11.   | SD Card Interface                             | 55 |
|   | 4.12.   | Camera Interface                              | 57 |
|   | 4.13.   | Indication Signals                            | 58 |
|   | 4.      | I.13.1. NET_STATUS                            | 58 |
|   | 4.      | I.13.2. STATUS                                | 59 |
| 5 | RF Sp   | pecifications                                 | 60 |
|   | 5.1.    | Main Antenna and Bluetooth/Wi-Fi Scan Antenna | 60 |
|   | 5.      | 5.1.1. Antenna Interface & Frequency Bands    | 60 |
|   | 5.      | 5.1.2. Antenna Tuner Control Interfaces       | 62 |
|   | 5.      | 5.1.3. Tx Power                               | 62 |
|   | 5.      | 5.1.4. Rx Sensitivity                         | 63 |
|   | 5.      | 5.1.5. Reference Design                       | 64 |
|   | 5.2.    | GNSS (Optional)                               | 65 |
|   | 5.2     | 5.2.1. Antenna Interface & Frequency Bands    |    |
|   | 5.2     | 5.2.2. GNSS Performance                       | 66 |
|   | 5.2     | 5.2.3. Reference Design                       | 66 |
|   | 5.3.    | RF Routing Guidelines                         | 67 |
|   | 5.4.    | Requirements for Antenna Design               | 69 |
|   | 5.5.    | RF Connector Recommendation                   | 70 |
| 6 | Electri | rical Characteristics and Reliability         | 72 |
|   | 6.1.    | Absolute Maximum Ratings                      | 72 |
|   | 6.2.    | Power Supply Ratings                          | 72 |
|   | 6.3.    | Power Consumption                             | 73 |
|   | 6.4.    | Digital I/O Characteristics                   | 76 |
|   | 6.5.    | ESD Protection                                | 77 |
|   | 6.6.    | Operating and Storage Temperatures            | 78 |
| 7 | Mecha   | nanical Information                           | 79 |
|   | 7.1.    | Mechanical Dimensions                         | 79 |
|   | 7.2.    | Recommended Footprint                         | 81 |
|   | 7.3.    | Top and Bottom Views                          | 82 |
| 8 | Storag  | ge, Manufacturing, and Packaging              | 83 |
|   | 8.1.    | Storage Conditions                            | 83 |
|   | 8.2.    | Manufacturing and Soldering                   | 84 |
|   | 8.3.    | Packaging Specifications                      | 86 |
|   | 8.3     | 3.3.1. Carrier Tape                           | 86 |



| 9 | Appendix R | References         | 89 |
|---|------------|--------------------|----|
|   | 0.5.4.     | Fackaging F100ess  |    |
|   | 831        | Packaging Process  | 22 |
|   | 8.3.3.     | Mounting Direction | 87 |
|   | 8.3.2.     | Plastic Reel       | 87 |
|   |            |                    |    |



# **Table Index**

| Table 1: Special Marks                                                       | . 12 |
|------------------------------------------------------------------------------|------|
| Table 2: Brief Introduction of Module                                        | . 13 |
| Table 3: Frequency Bands                                                     | . 14 |
| Table 4: Key Features                                                        | . 14 |
| Table 5: Parameter Definition                                                | . 19 |
| Table 6: Pin Description                                                     | . 19 |
| Table 7: Overview of Operating Modes                                         | . 27 |
| Table 8: Pin Definition of PSM Interface                                     | . 30 |
| Table 9: Pin Definition of Power Supply                                      | . 31 |
| Table 10: Pin Definition of PWRKEY                                           | . 33 |
| Table 11: Pin Definition of RESET_N                                          | . 38 |
| Table 12: Pin Definition of USB Interface                                    | . 40 |
| Table 13: Pin Definition of USB_BOOT                                         | . 42 |
| Table 14: Pin Definition of (U)SIM Interfaces                                | . 42 |
| Table 15: Pin Definition of Main UART                                        | . 45 |
| Table 16: Pin Definition of Debug UART                                       | . 45 |
| Table 17: Pin Definition of Auxiliary UART                                   | . 45 |
| Table 18: Pin Definition of I2C and PCM Interfaces                           | . 47 |
| Table 19: Pin Definition of Analog Audio Interfaces                          | . 49 |
| Table 20: Pin Definition of ADC Interfaces                                   | . 52 |
| Table 21: Characteristics of ADC Interfaces                                  | . 52 |
| Table 22: Mapping Between <i>q_adc_channel_id</i> and ADC channel            | . 52 |
| Table 23: Pin Definition of SPI                                              | . 53 |
| Table 24: Multiplexing Function Definition of External Flash Interface       | . 54 |
| Table 25: Pin Definition of LCM Interface                                    | . 55 |
| Table 26: Multiplexing Function Definition of SD Card Interface              | . 55 |
| Table 27: Pin Definition of Camera Interface                                 | . 57 |
| Table 28: Pin Definition of Indication Signals                               | . 58 |
| Table 29: Working States of Network Connection Status/Activity Indication    | . 58 |
| Table 30: Pin Definition of Main and Bluetooth/Wi-Fi Scan Antenna Interfaces | . 60 |
| Table 31: Operating Frequency (Unit: MHz)                                    | . 61 |
| Table 32: Pin Definition of GRFC Interfaces                                  | . 62 |
| Table 33: Truth Table of GRFC Interfaces (Unit: MHz)                         | . 62 |
| Table 34: RF Output Power                                                    | . 62 |
| Table 35: Conducted RF Receiver Sensitivity (Unit: dBm)                      | . 63 |
| Table 36: Pin Definition of GNSS Antenna Interface                           | . 65 |
| Table 37: GNSS Frequency (Unit: MHz)                                         | . 65 |
| Table 38: GNSS Performance                                                   | . 66 |
| Table 39: Requirements for Antenna Design                                    | . 69 |
| Table 40: Absolute Maximum Ratings                                           | . 72 |
| Table 41: Power Supply Ratings                                               | . 72 |
|                                                                              |      |



| Table 42: Power Consumption                                                                  | 73 |
|----------------------------------------------------------------------------------------------|----|
| Table 43: 1.8 V I/O Requirements (Unit: V)                                                   | 76 |
| Table 44: (U)SIM Low-voltage I/O Requirements (Unit: V)                                      | 76 |
| Table 45: (U)SIM High-voltage I/O Requirements (Unit: V)                                     | 77 |
| Table 46: SDIO High-voltage I/O Requirements                                                 | 77 |
| Table 47: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %) | 78 |
| Table 48: Operating and Storage Temperatures (Unit: °C)                                      | 78 |
| Table 49: Recommended Thermal Profile Parameters                                             | 85 |
| Table 50: Carrier Tape Dimension Table (Unit: mm)                                            | 86 |
| Table 51: Plastic Reel Dimension Table (Unit: mm)                                            | 87 |
| Table 52: Related Documents                                                                  | 89 |
| Table 53: Terms and Abbreviations                                                            | 89 |



# Figure Index

| Figure 1: Functional Diagram                                                         | 17 |
|--------------------------------------------------------------------------------------|----|
| Figure 2: Pin Assignment (Top View)                                                  | 18 |
| Figure 3: Power Consumption During Sleep Mode                                        | 28 |
| Figure 4: Sleep Mode Application with Suspend/Resume Function                        | 29 |
| Figure 5: Sleep Mode Application Without Suspend Function                            | 29 |
| Figure 6: Reference Design of Power Supply                                           | 32 |
| Figure 7: Power Supply Limits during Burst Transmission                              | 32 |
| Figure 8: Reference Design of Power Supply                                           | 33 |
| Figure 9: Turn On Module Using Driving PWRKEY                                        | 34 |
| Figure 10: Turn On Module Using Button                                               | 34 |
| Figure 11: Turn On Module Automatically                                              | 35 |
| Figure 12: Turn-on Timing                                                            |    |
| Figure 13: Turn-off Timing                                                           | 37 |
| Figure 14: Reference Circuit of RESET_N by Using Driving Circuit                     | 38 |
| Figure 15: Reference Circuit of RESET_N by Using Button                              | 38 |
| Figure 16: Reset Timing                                                              |    |
| Figure 17: Reference Circuit of USB Application                                      | 41 |
| Figure 18: Reference Circuit of USB_BOOT                                             | 42 |
| Figure 19: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector | 43 |
| Figure 20: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector  | 44 |
| Figure 21: Reference Circuit with Voltage-level Translator                           |    |
| Figure 22: Reference Circuit with Transistor Circuit                                 | 46 |
| Figure 23: Timing of PCM Mode                                                        | 47 |
| Figure 24: Reference Circuit of I2C and PCM Application with Audio Codec             | 48 |
| Figure 25: Reference Design for Microphone Interface                                 | 50 |
| Figure 26: Reference Design for Earpiece Interface                                   | 50 |
| Figure 27: Reference Design for Headphone Interface                                  | 51 |
| Figure 28: SD Card Interface Reference Design                                        | 56 |
| Figure 29: Reference Circuit of Network Status Indication                            | 59 |
| Figure 30: Reference Circuit of STATUS                                               | 59 |
| Figure 31: Reference Circuit of RF Antennas                                          | 64 |
| Figure 32: Reference Circuit of GNSS Antenna                                         |    |
| Figure 33: Microstrip Design on a 2-layer PCB                                        | 67 |
| Figure 34: Coplanar Waveguide Design on a 2-layer PCB                                | 68 |
| Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)  | 68 |
| Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)  |    |
| Figure 37: Dimensions of Receptacle (Unit: mm)                                       | 70 |
| Figure 38: Specifications of Mated Plugs                                             | 70 |
| Figure 39: Space Factor of Mated Connector (Unit: mm)                                | 71 |
| Figure 40: Module Top and Side Dimensions (Unit: mm)                                 | 79 |
| Figure 41: Bottom Dimension (Bottom View)                                            | 80 |



| Figure 42: Recommended Footprint (Top View)             | 81 |
|---------------------------------------------------------|----|
| Figure 43: Top and Bottom Views                         |    |
| Figure 44: Recommended Reflow Soldering Thermal Profile | 84 |
| Figure 45: Carrier Tape Dimension Drawing               | 86 |
| Figure 46: Plastic Reel Dimension Drawing               | 87 |
| Figure 47: Mounting Direction                           | 87 |
| Figure 48: Packaging Process                            | 88 |



# 1 Introduction

QuecOpen<sup>®</sup> is a solution where the module acts as the main processor. Constant transition and evolution of both the communication technology and the market highlight its merits. It can help you to:

- Realize embedded applications' quick development and shorten product R&D cycle
- Simplify circuit and hardware structure design to reduce engineering costs
- Miniaturize products
- Reduce product power consumption
- Apply OTA technology
- Enhance product competitiveness and price-performance ratio

The document defines the EG912U-GL QuecOpen® module and describes its air interfaces and hardware interfaces which are connected with your applications. This document can help you quickly understand interface specifications, RF characteristics, electrical and mechanical details, as well as other information of the module.

# 1.1. Special Marks

**Table 1: Special Marks** 

| Mark | Definition                                                                                                                                                                                                                                                                                                                                                                               |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| *    | Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, argument and so on, it indicates that the function, feature, interface, pin, AT command, argument and so on, are under development and currently not supported; and the asterisk (*) after a model indicates that the sample of the model is currently unavailable. |  |
| []   | Brackets ([]) used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SDIO_DATA[0:3] refers to all four SDIO pins: SDIO_DATA0, SDIO_DATA1, SDIO_DATA2, and SDIO_DATA3.                                                                                                                                                                            |  |



# **2** Product Overview

The module is an SMD module with compact packaging, which is engineered to meet most of the demands of M2M applications, for instance:

- POS
- PoC
- ETC
- Shared equipment
- Data card
- Energy control and monitoring
- Security and protection
- Industrial PDA

**Table 2: Brief Introduction of Module** 

| Category                     |                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------|
| Packaging and Number of Pins | LGA; 126 pins                                                                                |
| Dimensions                   | $(29.0 \pm 0.2) \text{ mm} \times (25.0 \pm 0.2) \text{ mm} \times (2.4 \pm 0.2) \text{ mm}$ |
| Weight                       | Approx. 3.67 g                                                                               |
| Wireless Technologies        | GSM, LTE, GNSS (optional), Bluetooth/Wi-Fi Scan <sup>1</sup>                                 |
|                              |                                                                                              |

EG912U-GL\_QuecOpen\_Hardware\_Design

<sup>&</sup>lt;sup>1</sup> The module supports both Wi-Fi Scan and Bluetooth functions. However, as the antenna interface is shared, the two functions cannot be used simultaneously. Additionally, Bluetooth and Wi-Fi Scan functions are optional. For details, contact Quectel Technical Support.



# 2.1. Frequency Bands and Functions

**Table 3: Frequency Bands** 

| Wireless Technology     | EG912U-GL                                                    |
|-------------------------|--------------------------------------------------------------|
| LTE-FDD                 | B1/B2/B3/B4/B5/B7/B8/B12/B13/B17/B18/B19/B20/B25/B26/B28/B66 |
| LTE-TDD                 | B34/B38/B39/B40/B41                                          |
| GSM                     | GSM850/EGSM900/DCS1800/PCS1900                               |
| GNSS (Optional)         | GPS, GLONASS, BDS, Galileo, QZSS                             |
| Bluetooth <sup>1</sup>  | Bluetooth 4.2                                                |
| Wi-Fi Scan <sup>1</sup> | 2.4 GHz 802.11b (Rx)                                         |

# 2.2. Key Features

**Table 4: Key Features** 

| Feature            | Description                                                  |  |
|--------------------|--------------------------------------------------------------|--|
| Power Supply       | Supply voltage: 3.3–4.3 V                                    |  |
| Power Supply       | <ul> <li>Typical supply voltage: 3.8 V</li> </ul>            |  |
|                    | <ul> <li>GSM850: Class 4 (33 dBm ±2 dB)</li> </ul>           |  |
|                    | <ul> <li>EGSM900: Class 4 (33 dBm ±2 dB)</li> </ul>          |  |
| Transmitting Dawer | <ul> <li>DCS1800: Class 1 (30 dBm ±2 dB)</li> </ul>          |  |
| Transmitting Power | <ul> <li>PCS1900: Class 1 (30 dBm ±2 dB)</li> </ul>          |  |
|                    | <ul> <li>LTE-FDD band: Class 3 (23 dBm ±2 dB)</li> </ul>     |  |
|                    | <ul> <li>LTE-TDD band: Class 3 (23 dBm ±2 dB)</li> </ul>     |  |
|                    | <ul> <li>Supports up to 3GPP Rel-13 Cat 1 FDD/TDD</li> </ul> |  |
|                    | <ul><li>Supports 1.4/3/5/10/15/20 MHz RF bandwidth</li></ul> |  |
|                    | <ul> <li>Supports uplink QPSK and 16QAM</li> </ul>           |  |
| LTE Features       | <ul> <li>Supports downlink QPSK, 16QAM, and 64QAM</li> </ul> |  |
|                    | <ul> <li>Max. transmission data rates:</li> </ul>            |  |
|                    | LTE-FDD: 10 Mbps (DL)/5 Mbps (UL)                            |  |
|                    | LTE-TDD: 8.96 Mbps (DL)/3.1 Mbps (UL)                        |  |
| GSM Features       | GPRS:                                                        |  |
| Goivi Features     | <ul> <li>Supports GPRS multi-slot class 12</li> </ul>        |  |



|                            | Coding scheme: CS 1–4                                                                                                                                                                       |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                            | <ul> <li>Max. transmission data rates: 85.6 kbps (DL)/85.6 kbps (UL)</li> </ul>                                                                                                             |  |  |  |  |
|                            | <ul> <li>Supports TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/HTTPS/</li> </ul>                                                                                                                 |  |  |  |  |
| Internet Protocol Features | FTPS/SSL/FILE/MQTT/MMS/SMTP/SMTPS protocols                                                                                                                                                 |  |  |  |  |
|                            | <ul> <li>Supports PAP and CHAP for PPP connections</li> </ul>                                                                                                                               |  |  |  |  |
|                            | <ul> <li>Text and PDU modes</li> </ul>                                                                                                                                                      |  |  |  |  |
| SMS                        | <ul> <li>Point-to-point MO and MT</li> </ul>                                                                                                                                                |  |  |  |  |
| SIVIS                      | SMS cell broadcast                                                                                                                                                                          |  |  |  |  |
|                            | <ul> <li>SMS storage: (U)SIM card and ME; ME by default</li> </ul>                                                                                                                          |  |  |  |  |
|                            | <ul> <li>Compliant with USB 2.0 specification (slave mode only), with</li> </ul>                                                                                                            |  |  |  |  |
|                            | maximum transmission rate up to 480 Mbps                                                                                                                                                    |  |  |  |  |
| USB Interface              | <ul> <li>Used for data transmission, software debugging and firmware upgrade</li> <li>Supports USB serial drivers for Windows 7/8/8.1/10/11, Linux 2.6–6.5, and Android 4.x–13.x</li> </ul> |  |  |  |  |
|                            | Supports one USB_BOOT interface                                                                                                                                                             |  |  |  |  |
| USB_BOOT Interface         | Forces the module into emergency download mode                                                                                                                                              |  |  |  |  |
|                            | Supports (U)SIM card: 1.8/3.0 V                                                                                                                                                             |  |  |  |  |
| (U)SIM Interfaces          | Supports Dual SIM Single Standby                                                                                                                                                            |  |  |  |  |
|                            | Main UART                                                                                                                                                                                   |  |  |  |  |
|                            | Used for data transmission                                                                                                                                                                  |  |  |  |  |
|                            | <ul> <li>Baud rates: up to 921600 bps; 115200 bps by default</li> </ul>                                                                                                                     |  |  |  |  |
|                            | <ul> <li>Supports RTS and CTS hardware flow control</li> </ul>                                                                                                                              |  |  |  |  |
| LIADT lintarifo and        | Debug UART                                                                                                                                                                                  |  |  |  |  |
| UART Interfaces            | <ul> <li>Used for log output and Linux console</li> </ul>                                                                                                                                   |  |  |  |  |
|                            | Baud rate: 921600 bps                                                                                                                                                                       |  |  |  |  |
|                            | <ul> <li>Cannot be used as a general-purpose UART</li> </ul>                                                                                                                                |  |  |  |  |
|                            | Auxiliary UART                                                                                                                                                                              |  |  |  |  |
|                            | <ul> <li>The baud rate is the same as that of the main UART</li> </ul>                                                                                                                      |  |  |  |  |
|                            | <ul> <li>Supports one PCM interface (slave mode only)</li> </ul>                                                                                                                            |  |  |  |  |
| PCM Interface              | <ul> <li>Used for audio data transmission between the module and the</li> </ul>                                                                                                             |  |  |  |  |
|                            | external codec                                                                                                                                                                              |  |  |  |  |
| I2C Interface              | <ul> <li>Supports one I2C interface</li> </ul>                                                                                                                                              |  |  |  |  |
| 120 IIIleitace             | <ul> <li>Complies with the I2C-bus Specification</li> </ul>                                                                                                                                 |  |  |  |  |
|                            | <ul> <li>Supports one analog audio input and two analog audio output</li> </ul>                                                                                                             |  |  |  |  |
| Audio Features             | channels                                                                                                                                                                                    |  |  |  |  |
| Audio realures             | <ul> <li>HR/FR/EFR/AMR/AMR-WB</li> </ul>                                                                                                                                                    |  |  |  |  |
|                            | <ul> <li>Supports echo cancellation and noise suppression</li> </ul>                                                                                                                        |  |  |  |  |
| ADC Interfaces             | Supports two ADC Interfaces                                                                                                                                                                 |  |  |  |  |
|                            | Supports one SPI interface (master mode only)                                                                                                                                               |  |  |  |  |
|                            | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                     |  |  |  |  |
| SPI Interface              | <ul> <li>1.8 V voltage domain</li> </ul>                                                                                                                                                    |  |  |  |  |
| SPI Interface              | Clock rate: up to 25 MHz                                                                                                                                                                    |  |  |  |  |



|                    | The external flash interface is multiplexed from other pins                                                                                                                                                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCM Interface      | Supports LCM interface in SPI mode                                                                                                                                                                                  |
| SD Card Interface  | <ul> <li>Supports one interface compliant with SD 2.0 specification and can be used for external SD card</li> <li>Partial SD card pins can be multiplexed from other pins</li> </ul>                                |
| Camera Interface   | <ul> <li>Supports one camera interface</li> <li>Supports cameras up to 0.3 MP</li> <li>I/O interface only supports 1.8 V power domain</li> <li>Supports SPI two-data-line data transmission</li> </ul>              |
| Indication Signal  | <ul> <li>NET_STATUS indicates module's network activity status</li> <li>STATUS indicates module's operation status</li> </ul>                                                                                       |
| Antenna Interfaces | <ul> <li>Main antenna interface (ANT_MAIN)</li> <li>Bluetooth/Wi-Fi Scan antenna interface (ANT_BT/WIFI_SCAN <sup>2</sup>)</li> <li>GNSS antenna interface (ANT_GNSS) (optional)</li> <li>50 Ω impedance</li> </ul> |
| Position Fixing    | Supports Wi-Fi Scan and GNSS (optional)                                                                                                                                                                             |
| Temperature Range  | <ul> <li>Operating temperature range: -35 °C to +75 °C <sup>3</sup></li> <li>Extended temperature range: -40 °C to +85 °C <sup>4</sup></li> <li>Storage temperature range: -40 °C to +90 °C</li> </ul>              |
| Firmware Upgrade   | Via USB interface and DFOTA                                                                                                                                                                                         |
| RoHS               | All hardware components are fully compliant with EU RoHS Directive                                                                                                                                                  |

# 2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband
- Memory
- Radio frequency
- Peripheral interfaces

<sup>&</sup>lt;sup>2</sup> The module supports both Wi-Fi Scan and Bluetooth functions. However, as the antenna interface is shared, the two functions cannot be used simultaneously. Additionally, Bluetooth and Wi-Fi Scan functions are optional. For details, contact Quectel Technical Support.

<sup>&</sup>lt;sup>3</sup> Within operating temperature range, the module meets 3GPP specifications.

<sup>&</sup>lt;sup>4</sup> Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, and emergency call, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P<sub>out</sub>, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.



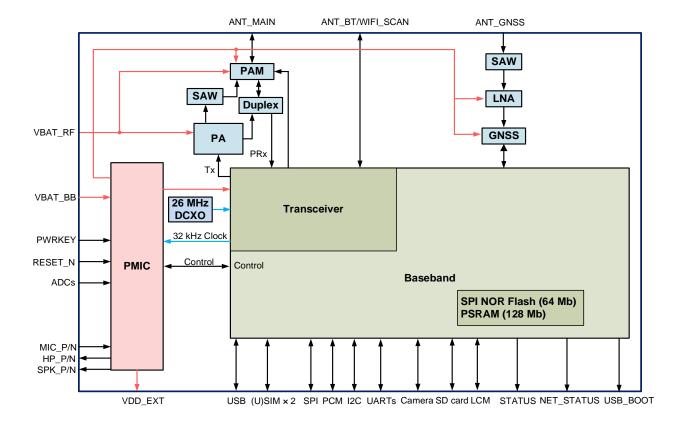



Figure 1: Functional Diagram

#### **NOTE**

- 1. The module supports both Wi-Fi scan and Bluetooth functions. However, as the antenna interface is shared, the two functions cannot be used simultaneously. Additionally, Bluetooth and Wi-Fi scan functions are optional. For details, contact Quectel Technical Support.
- 2. GNSS function of the module is optional.



#### 2.4. Pin Assignment

The following figure illustrates the pin assignment of the module.

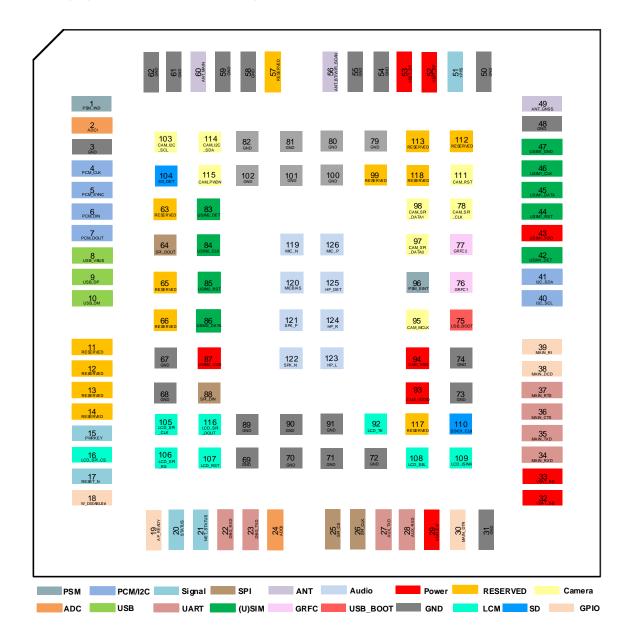



Figure 2: Pin Assignment (Top View)

#### **NOTE**

- 1. If the emergency download function is not used, USB\_BOOT cannot be pulled up before the module's startup.
- 2. Keep all RESERVED pins and unused pins unconnected, and connect all GND pins to ground.
- 3. The module supports Dual SIM Single Standby. For details, contact Quectel Technical Support.



4. When using pin 18 (W\_DISABLE#), pin 19 (AP\_READY), pin 30 (MAIN\_DTR), pin 38 (MAIN\_DCD), pin 39 (MAIN\_RI), and pin 110 (SDIO1\_CLK), please note that these pins will have a period of variable level state (not controllable by software) after the module is turned on: at high level (3 V) for 2 s and then at low level (0 V) for 1.2 s, before they can be configured as 1.8 V input or output. Please evaluate whether the unstable level output state on power-up meets your application design requirements based on the specific usage scenario and circuit design.

# 2.5. Pin Description

**Table 5: Parameter Definition** 

| Parameter | Description          |
|-----------|----------------------|
| Al        | Analog Input         |
| AIO       | Analog Input/Output  |
| AO        | Analog Output        |
| DI        | Digital Input        |
| DIO       | Digital Input/Output |
| DO        | Digital Output       |
| OD        | Open Drain           |
| PI        | Power Input          |
| PO        | Power Output         |

DC characteristics include power domain and rate current.

**Table 6: Pin Description** 

| Power Supply |         |     |                                             |                                              |                                                                |
|--------------|---------|-----|---------------------------------------------|----------------------------------------------|----------------------------------------------------------------|
| Pin Name     | Pin No. | I/O | Description                                 | DC Characteristics                           | Comment                                                        |
| VBAT_BB      | 32, 33  | PI  | Power supply for the module's baseband part | Vmax = 4.3 V<br>Vmin = 3.3 V<br>Vnom = 3.8 V | It must be provided with sufficient current of at least 1.0 A. |



| VBAT_RF          | 52, 53  | PI  | Power supply for the module's RF part          |                                                  | It must be provided with sufficient current of at least 2.5 A.                   |
|------------------|---------|-----|------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|
| VDD_EXT          | 29      | РО  | Provides 1.8 V for external circuit            | Vnom = 1.8 V<br>I <sub>O</sub> max = 50 mA       | Used with a 2.2 µF capacitor and TVS. It is recommended to reserve a test point. |
| Turn On/Off      |         |     |                                                |                                                  |                                                                                  |
| Pin Name         | Pin No. | I/O | Description                                    | DC Characteristics                               | Comment                                                                          |
| PWRKEY           | 15      | DI  | Turns on/off the module                        | V 7224 0.5 V                                     | Active low. It is recommended to reserve a test point.                           |
| RESET_N          | 17      | DI  | Resets the module                              | V <sub>IL</sub> max = 0.5 V<br>VBAT power domain | Active low. A test point is recommended to be reserved if unused.                |
| Indication Inter | faces   |     |                                                |                                                  |                                                                                  |
| Pin Name         | Pin No. | I/O | Description                                    | DC Characteristics                               | Comment                                                                          |
| STATUS           | 20      | DO  | Indicates the module's operation status        | 1.9 V power demain                               | If unused, keep them                                                             |
| NET_STATUS       | 21      | DO  | Indicates the module's network activity status | 1.8 V power domain                               | open.                                                                            |
| USB Interface    |         |     |                                                |                                                  |                                                                                  |
| Pin Name         | Pin No. | I/O | Description                                    | DC Characteristics                               | Comment                                                                          |
| USB_VBUS         | 8       | AI  | USB connection detect                          | Input voltage range: 3.5–5.25 V                  | A test point must be reserved for debugging.                                     |
| USB_DP           | 9       | AIO | USB differential data<br>(+)                   |                                                  | USB 2.0 compliant.<br>Requires differential                                      |
| USB_DM           | 10      | AIO | USB differential data<br>(-)                   |                                                  | impedance of 90 Ω. Test points must be reserved for debugging.                   |
| (U)SIM Interfac  | es      |     |                                                |                                                  |                                                                                  |
| Pin Name         | Pin No. | I/O | Description                                    | DC Characteristics                               | Comment                                                                          |
| USIM1_VDD        | 43      | РО  | (U)SIM1 card power supply                      | I <sub>O</sub> max = 50 mA                       | Either 1.8 V or 3.0 V (U)SIM card is                                             |
|                  |         |     |                                                |                                                  |                                                                                  |



|            |         |     |                                      |                            | supported and can be identified automatically by the module.                                      |
|------------|---------|-----|--------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------|
| USIM1_DATA | 45      | DIO | (U)SIM1 card data                    |                            |                                                                                                   |
| USIM1_CLK  | 46      | DO  | (U)SIM1 card clock                   |                            |                                                                                                   |
| USIM1_RST  | 44      | DO  | (U)SIM1 card reset                   |                            |                                                                                                   |
| USIM1_DET  | 42      | DI  | (U)SIM1 card<br>hot-plug detect      | 1.8 V power domain         | If unused, keep it open.                                                                          |
| USIM1_GND  | 47      | -   | Specified ground for (U)SIM 1        |                            |                                                                                                   |
| USIM2_VDD  | 87      | PO  | (U)SIM2 card power supply            | I <sub>O</sub> max = 50 mA | Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module. |
| USIM2_DATA | 86      | DIO | (U)SIM2 card data                    |                            |                                                                                                   |
| USIM2_CLK  | 84      | DO  | (U)SIM2 card clock                   |                            |                                                                                                   |
| USIM2_RST  | 85      | DO  | (U)SIM2 card reset                   |                            |                                                                                                   |
| USIM2_DET  | 83      | DI  | (U)SIM2 card<br>hot-plug detect      | 1.8 V power domain         | A test point must be reserved for debugging.                                                      |
| Main UART  |         |     |                                      |                            |                                                                                                   |
| Pin Name   | Pin No. | I/O | Description                          | DC Characteristics         | Comment                                                                                           |
| MAIN_CTS   | 36      | DO  | Clear to send signal from the module |                            | Connect to MCU's CTS. If unused, keep it open.                                                    |
| MAIN_RTS   | 37      | DI  | Request to send signal to the module | 1.8 V power domain         | Connect to MCU's RTS. If unused, keep it open.                                                    |
| MAIN_RXD   | 34      | DI  | Main UART receive                    |                            | If unused, keep them                                                                              |
| MAIN_TXD   | 35      | DO  | Main UART transmit                   | -                          | open.                                                                                             |
|            |         |     |                                      |                            |                                                                                                   |



| Pin Name      | Pin No. | I/O | Description                                            | DC Characteristics   | Comment                                                                                                 |
|---------------|---------|-----|--------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|
| AUX_TXD       | 27      | DO  | Auxiliary UART transmit                                | − 1.8 V power domain | If unused, keep them                                                                                    |
| AUX_RXD       | 28      | DI  | Auxiliary UART receive                                 | 1.0 v power domain   | open.                                                                                                   |
| Debug UART    |         |     |                                                        |                      |                                                                                                         |
| Pin Name      | Pin No. | I/O | Description                                            | DC Characteristics   | Comment                                                                                                 |
| DBG_RXD       | 22      | DI  | Debug UART receive                                     | - 1.8 V power domain | Test points must to be reserved for                                                                     |
| DBG_TXD       | 23      | DO  | Debug UART transmit                                    | 1.0 v power demain   | debugging.                                                                                              |
| PSM Interface |         |     |                                                        |                      |                                                                                                         |
| Pin Name      | Pin No. | I/O | Description                                            | DC Characteristics   | Comment                                                                                                 |
| PSM_EINT      | 96      | DI  | External interrupt,<br>wakes up the<br>module from PSM | 1.8 V power domain   | Wakes up the module<br>from PSM when<br>being pulled high<br>externally.<br>If unused, keep it<br>open. |
| PSM_IND*      | 1       | DO  | Indicates the module's power saving mode               | 1.8 V power domain   | If unused, keep it open.                                                                                |
| I2C Interface |         |     |                                                        |                      |                                                                                                         |
| Pin Name      | Pin No. | I/O | Description                                            | DC Characteristics   | Comment                                                                                                 |
| I2C_SCL       | 40      | OD  | I2C serial clock                                       |                      | External 1.8 V pull-up resistor is required.                                                            |
| I2C_SDA       | 41      | OD  | I2C serial data                                        | 1.8 V power domain   | If unused, keep them open.                                                                              |
| PCM Interface |         |     |                                                        |                      |                                                                                                         |
| Pin Name      | Pin No. | I/O | Description                                            | DC Characteristics   | Comment                                                                                                 |
| PCM_SYNC      | 5       | DI  | PCM data frame sync                                    | _                    | If unused, keep them                                                                                    |
| PCM_CLK       | 4       | DI  | PCM clock                                              | _ 1.8 V power domain | open.                                                                                                   |
| PCM_DIN       | 6       | DI  | PCM data input                                         | _                    | Supports slave mode only.                                                                               |
| PCM_DOUT      | 7       | DO  | PCM data output                                        |                      |                                                                                                         |
|               |         |     |                                                        |                      |                                                                                                         |



| Antenna Interfa                  | aces    |            |                                                     |                     |                                                                                                                                                                         |
|----------------------------------|---------|------------|-----------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin Name                         | Pin No. | I/O        | Description                                         | DC Characteristics  | Comment                                                                                                                                                                 |
| ANT_MAIN                         | 60      | AIO        | Main antenna interface                              |                     | 50 Ω characteristic impedance.                                                                                                                                          |
| ANT_BT/<br>WIFI_SCAN             | 56      | AIO/<br>AI | Shared interface for<br>Bluetooth and Wi-Fi<br>Scan |                     | Bluetooth and Wi-Fi Scan cannot be used at the same time. Wi-Fi Scan antenna can only receive but not transmit. 50 Ω characteristic impedance. If unused, keep it open. |
| ANT_GNSS                         | 49      | AI         | GNSS antenna interface                              |                     | 50 Ω characteristic impedance. If unused, keep it open.                                                                                                                 |
| Antenna Tuner Control Interfaces |         |            |                                                     |                     |                                                                                                                                                                         |
| Pin Name                         | Pin No. | I/O        | Description                                         | DC Characteristics  | Comment                                                                                                                                                                 |
| GRFC1                            | 76      | DO         | Generic RF                                          | 1.9. V power domain | If unused, keep them                                                                                                                                                    |
| GRFC2                            | 77      | DO         | controller                                          | 1.8 V power domain  | open.                                                                                                                                                                   |
| SPI Interface                    |         |            |                                                     |                     |                                                                                                                                                                         |
| Pin Name                         | Pin No. | I/O        | Description                                         | DC Characteristics  | Comment                                                                                                                                                                 |
| SPI_CLK                          | 26      | DO         | SPI clock                                           |                     |                                                                                                                                                                         |
| SPI_CS                           | 25      | DO         | SPI chip select                                     | 1.0.V novem domain  | If unused, keep them open.                                                                                                                                              |
| SPI_DIN                          | 88      | DI         | SPI data input                                      | 1.8 V power domain  | Supports master mode only.                                                                                                                                              |
| SPI_DOUT                         | 64      | DO         | SPI data output                                     | -                   | mode only.                                                                                                                                                              |
| ADC Interfaces                   | 5       |            |                                                     |                     |                                                                                                                                                                         |
| Pin Name                         | Pin No. | I/O        | Description                                         | DC Characteristics  | Comment                                                                                                                                                                 |
| ADC0                             | 24      | AI         | General-purpose                                     | Voltage range:      | It is recommended to reserve a voltage divider circuit.                                                                                                                 |
| ADC1                             | 2       | Al         | ADC interfaces                                      | 0 V to VBAT         | divider circuit.  If unused, keep them open.                                                                                                                            |



| Analog Audio II | nterfaces |     |                                                |                                              |                                                                                                                                                           |
|-----------------|-----------|-----|------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin Name        | Pin No.   | I/O | Description                                    | DC Characteristics                           | Comment                                                                                                                                                   |
| MIC_N           | 119       | Al  | Microphone analog input (-)                    |                                              |                                                                                                                                                           |
| MIC_P           | 126       | Al  | Microphone analog input (+)                    |                                              | If unused, keep them open.                                                                                                                                |
| MICBIAS         | 120       | РО  | Bias voltage output for microphone             | Vmax = 3.0 V<br>Vmin = 2.2 V<br>Vnom = 2.2 V | <b></b>                                                                                                                                                   |
| SPK_P           | 121       | АО  | Analog audio<br>differential output<br>(+)     |                                              | If unused, keep them                                                                                                                                      |
| SPK_N           | 122       | АО  | Analog audio differential output (-)           |                                              | open.                                                                                                                                                     |
| HP_L            | 123       | АО  | Headphone left channel output                  |                                              |                                                                                                                                                           |
| HP_R            | 124       | АО  | Headphone right channel output                 |                                              | If unused, keep them open.                                                                                                                                |
| HP_DET          | 125       | DI  | Headphone hot-plug detect                      |                                              |                                                                                                                                                           |
| USB_BOOT Inte   | erface    |     |                                                |                                              |                                                                                                                                                           |
| Pin Name        | Pin No.   | I/O | Description                                    | DC Characteristics                           | Comment                                                                                                                                                   |
| USB_BOOT        | 75        | DI  | Forces the module into emergency download mode | 1.8 V power domain                           | Active high. A circuit that can set the module into emergency download mode should be reserved during design. A test point is recommended to be reserved. |
| LCM Interface   |           |     |                                                |                                              |                                                                                                                                                           |
| Pin Name        | Pin No.   | I/O | Description                                    | DC Characteristics                           | Comment                                                                                                                                                   |
| LCD_SPI_CS      | 16        | DO  | LCD chip select                                |                                              |                                                                                                                                                           |
| LCD_TE          | 92        | DI  | LCD tearing effect                             | 1.8 V power domain                           | If unused, keep them open.                                                                                                                                |
| LCD_SPI_CLK     | 105       | DO  | LCD clock                                      |                                              |                                                                                                                                                           |



| LCD_SPI_RS        | 106     | DO  | LCD register select                             |                                            |                                                                                                                                      |
|-------------------|---------|-----|-------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| LCD_RST           | 107     | DO  | LCD reset                                       | -                                          |                                                                                                                                      |
| LCD_SEL           | 108     | DO  | Reserved                                        | -                                          |                                                                                                                                      |
| LCD_SPI_<br>DOUT  | 116     | DIO | LCD data                                        | -                                          |                                                                                                                                      |
| LCD_ISINK         | 109     | PI  | Sink current input.<br>Backlight<br>adjustment. | Imax = 200 mA. Current is configurable.    | It is driven by the current sink method and connected to the backlight cathode; the brightness can be adjusted with current control. |
| Camera Interfac   | се      |     |                                                 |                                            |                                                                                                                                      |
| Pin Name          | Pin No. | I/O | Description                                     | DC Characteristics                         | Comment                                                                                                                              |
| CAM_VDDIO         | 93      | РО  | Digital power supply of camera                  | Vnom= 1.8 V<br>I <sub>O</sub> max = 100 mA | _                                                                                                                                    |
| CAM_VDD           | 94      | РО  | Analog power supply of camera                   | $Vnom= 2.8 V$ $I_{O}max = 100 mA$          |                                                                                                                                      |
| CAM_SPI_CLK       | 78      | DI  | SPI clock of camera                             |                                            |                                                                                                                                      |
| CAM_MCLK          | 95      | DO  | Master clock of camera                          |                                            | If unused, keep them                                                                                                                 |
| CAM_SPI_<br>DATA0 | 97      | DI  | SPI data 0 of camera                            | -                                          | open.                                                                                                                                |
| CAM_SPI_<br>DATA1 | 98      | DI  | SPI data 1 of camera                            | _                                          |                                                                                                                                      |
| CAM_RST           | 111     | DO  | Reset of camera                                 | 1.8 V power domain                         |                                                                                                                                      |
| CAM_PWDN          | 115     | DO  | Power down of camera                            | -                                          |                                                                                                                                      |
| CAM_I2C_SCL       | 103     | OD  | I2C clock of camera                             | -                                          | Pull each of them up to 1.8 V power                                                                                                  |
| CAM_I2C_<br>SDA   | 114     | OD  | I2C data of camera                              |                                            | domain with an external resistor.  If unused, keep them open.                                                                        |
| Other Interface   | s       |     |                                                 |                                            |                                                                                                                                      |
| Pin Name          | Pin No. | I/O | Description                                     | DC Characteristics                         | Comment                                                                                                                              |
| SD_DET            | 104     | DI  | SD card hot-plug detect                         | 1.8 V power domain                         | If unused, keep them open.                                                                                                           |
|                   |         |     |                                                 |                                            |                                                                                                                                      |



| 1PPS            | 51        | DO                                                                  | Pulse signal output          |                     | -                        |  |
|-----------------|-----------|---------------------------------------------------------------------|------------------------------|---------------------|--------------------------|--|
| SDIO1_CLK       | 110       | DO                                                                  | SD card clock                | 3.2 V power domain  |                          |  |
| GPIO Interfaces | S         |                                                                     |                              |                     |                          |  |
| Pin Name        | Pin No.   | I/O                                                                 | Description                  | DC Characteristics  | Comment                  |  |
| MAIN_DCD        | 38        | DIO                                                                 |                              |                     |                          |  |
| MAIN_RI         | 39        | DIO                                                                 | _                            | 1.8 V power domain  | Used as GPIO by default. |  |
| MAIN_DTR        | 30        | DIO                                                                 | General purpose input/output |                     |                          |  |
| W_DISABLE#      | 18        | DIO                                                                 |                              |                     |                          |  |
| AP_READY        | 19        | DIO                                                                 |                              |                     |                          |  |
| <b>GND Pins</b> |           |                                                                     |                              |                     |                          |  |
| Pin Name        | Pin No.   |                                                                     |                              |                     |                          |  |
| GND             | 3, 31, 48 | 3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102 |                              |                     |                          |  |
| RESERVED pin    | ıs        |                                                                     |                              |                     |                          |  |
| Pin Name        | Pin No.   |                                                                     |                              |                     |                          |  |
| RESERVED        | 11–14, 5  | 7, 63, 6                                                            | 5, 66, 99,112, 113, 117      | <sup>7</sup> , 118, |                          |  |
|                 |           |                                                                     |                              |                     |                          |  |

#### **NOTE**

Pins 18, 19, 30, 38 and 39 (W\_DISABLE#, AP\_READY, MAIN\_DTR, MAIN\_DCD, MAIN\_RI) are not defined with functions corresponding to the pin names, but are used as GPIOs by default. For GPIO configurations, see *document* [1].

#### 2.6. EVB Kit

Quectel supplies an evaluation board (LTE OPEN EVB) with accessories to develop or test the module. For more details, see *document* [2].



# **3** Operating Characteristics

# 3.1. Operating Modes

The following table briefly outlines the operating modes referred in the following chapters.

**Table 7: Overview of Operating Modes** 

| Mode                          | Details                                                                                                                                                                                                                         |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Full Functionality            | Idle Software is active. The module remains registered on the network and is ready to send and receive data.                                                                                                                    |  |  |  |
| Full Functionality<br>Mode    | Network connection is ongoing. In this mode, the power Voice/Data consumption is decided by network setting and data transmission rate.                                                                                         |  |  |  |
| Minimum<br>Functionality Mode | <ul> <li>ql_dev_set_modem_fun() can set the module to a minimum functionality mode without removing the power supply.</li> <li>In this case, both RF function and (U)SIM card are invalid.</li> </ul>                           |  |  |  |
| Airplane Mode                 | <ul> <li>ql_dev_set_modem_fun() can set the module to airplane mode.</li> <li>In this mode, RF function is invalid.</li> </ul>                                                                                                  |  |  |  |
| Sleep Mode                    | In this mode, current consumption of the module is reduced to a low level. The module remains the ability to receive paging message, SMS, voice calls and TCP/UDP data from network normally.                                   |  |  |  |
| PSM Mode                      | In this mode, current consumption of the module is reduced to a minimized level.  API function cannot be sent to the module, but the module remains the ability to receive paging message from station and be woken up to work. |  |  |  |
| Power Down Mode               | PMU shuts down the power supply. Software is not active. However, operating voltage connected to VBAT_BB/VBAT_RF pins remains applied.                                                                                          |  |  |  |

NOTE

For more details about API function, see document [3].



# 3.2. Sleep Mode

The module can reduce its power consumption to a low level in the sleep mode. The following chapters describe power saving procedures of the module.

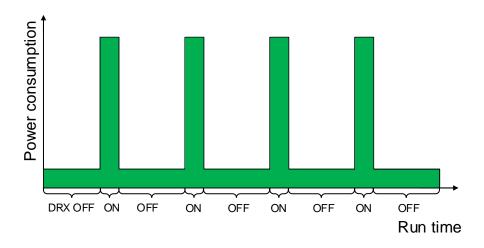



Figure 3: Power Consumption During Sleep Mode

NOTE

DRX cycle values are transmitted over the wireless network.

#### 3.2.1. USB Application with USB Suspend/Resume Function

For the following two scenarios:

- The host supports USB suspend/resume and remote wake-up functions
- The host supports USB suspend/resume, but does not support remote wake-up function

The following three preconditions must be met to make the module enter sleep mode:

- Enable sleep function by using *ql\_autosleep\_enable()*. See *document [4]* for details.
- Ensure that all wakelocks have been released.
- Ensure the host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure illustrates the connection between the module and the host.



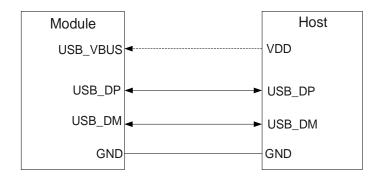



Figure 4: Sleep Mode Application with Suspend/Resume Function

You can wake up the module by sending data to it through USB.



USB suspend is supported on Linux system but not on Windows system.

#### 3.2.2. USB Application Without USB Suspend Function

If the host does not support USB suspend function, disconnect USB\_VBUS with an external control circuit to make the module enter sleep mode.

- Enable sleep function by using *ql\_autosleep\_enable()*.
- Ensure that all wakelocks have been released.
- Disconnect USB\_VBUS.

The following figure illustrates the connection between the module and the host.

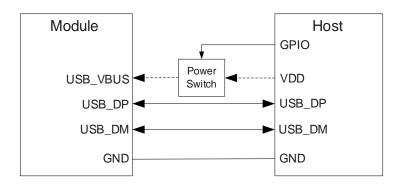



Figure 5: Sleep Mode Application Without Suspend Function

You can wake up the module by turning on the power switch to supply power to USB\_VBUS.



**NOTE** 

Pay attention to the level match shown in dotted line between the module and the host.

### 3.3. Airplane Mode

When the module enters airplane mode, the RF function does not work and APIs related to the RF function are inaccessible.

*ql\_dev\_set\_modem\_fun()* provides the choice of functionality level through setting parameter *at\_dst\_cfun* into 0, 1 or 4.

- at\_dst\_cfun is 0: Minimum functionality mode. Both RF and (U)SIM functions are disabled.
- at\_dst\_cfun is 1: Full functionality mode (by default).
- at\_dst\_cfun is 4: airplane mode (RF function is disabled).

#### 3.4. PSM

The module supports power saving mode (PSM). It enters the PSM by calling *ql\_psm\_sleep\_enable()* and *ql\_autosleep\_enable()* when working normally. Pulling up PSM\_EINT pin externally or setting the timer by software will enable the module to exit PSM.

**Table 8: Pin Definition of PSM Interface** 

| Pin Name | Pin No. | I/O | Description                                            | Comment                                                                                   |
|----------|---------|-----|--------------------------------------------------------|-------------------------------------------------------------------------------------------|
| PSM_EINT | 96      | DI  | External interrupt,<br>wakes up the module<br>from PSM | Wakes up the module from PSM when being pulled high externally.  If unused, keep it open. |
| PSM_IND* | 1       | DO  | Indicates the module's power saving mode               | If unused, keep it open.                                                                  |

NOTE

See **document [5]** for details on ql\_psm\_sleep\_enable().



## 3.5. Power Supply

#### 3.5.1. Power Supply Pins

The module provides four VBAT pins for connection with an external power supply.

- Two VBAT\_RF pins for RF part.
- Two VBAT\_BB pins for BB part.

**Table 9: Pin Definition of Power Supply** 

| Pin Name | Pin No.                                                             | I/O  | Description                                 | Min.  | Тур. | Max. | Unit |
|----------|---------------------------------------------------------------------|------|---------------------------------------------|-------|------|------|------|
| VBAT_BB  | 32, 33                                                              | – PI | Power supply for the module's baseband part | - 3.3 | 3.8  | 4.3  | V    |
| VBAT_RF  | 52, 53                                                              | - PI | Power supply for the module's RF part       |       |      |      | V    |
| GND      | 3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102 |      |                                             |       |      |      |      |

#### 3.5.2. Reference Design for Power Supply

The power design for the module is very important, as the performance of the module largely depends on the power source. The power supply of the module should be able to provide sufficient current of at least 3.0 A when the GSM or both GSM and LTE are available, and provide sufficient current of at least 2.0 A when only LTE is available. If the voltage drop between input and output is not too high, it is suggested that an LDO should be used. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is recommended.

The following figure illustrates a reference design for 5 V input power source. The typical output of the power supply is about 3.8 V and the maximum load current is 3.0 A.



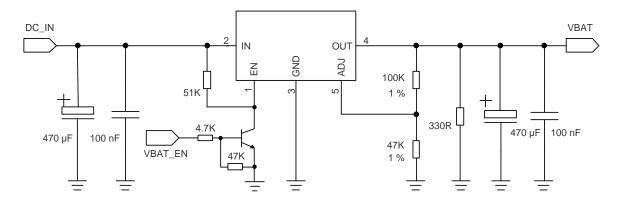



Figure 6: Reference Design of Power Supply

#### 3.5.3. Voltage Stability Requirements

The power supply range of the module is from 3.3 V to 4.3 V. Please make sure the input voltage never drops below 3.3 V.

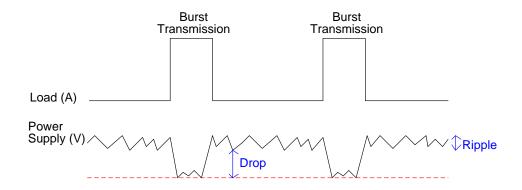



Figure 7: Power Supply Limits during Burst Transmission

To decrease voltage drop, a filter capacitor of about 100  $\mu$ F with low ESR (ESR  $\leq$  0.7  $\Omega$ ) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT\_BB and VBAT\_RF pins. The main power supply from an external application should be a single voltage source and can be expanded to two sub paths with the star configuration. The width of VBAT\_BB trace should be at least 2 mm; and the width of VBAT\_RF trace should be at least 2.5 mm. In principle, the longer the VBAT trace is, the wider it should be.

In addition, in order to ensure the stability of power source, it is suggested that a TVS of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used. The reference circuit is shown as below.



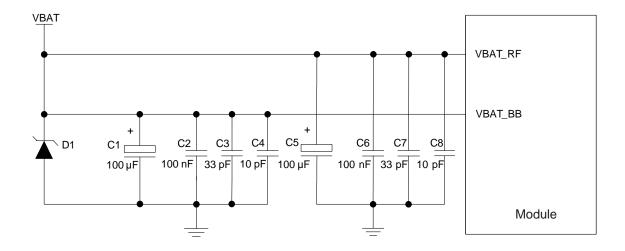



Figure 8: Reference Design of Power Supply

# 3.6. Turn On

#### 3.6.1. Turn On with PWPKEY

**Table 10: Pin Definition of PWRKEY** 

| Pin Name | Pin No. | I/O | Description            | Comment                                    |
|----------|---------|-----|------------------------|--------------------------------------------|
| PWRKEY   | 15      | DI  | Turn on/off the module | VBAT power domain. Active low.             |
|          |         |     |                        | It is recommended to reserve a test point. |

When the module is in power down mode, driving the PWRKEY pin low for at least 2 s can turn on the module. It is recommended to use an open drain/collector driver to control the PWRKEY.



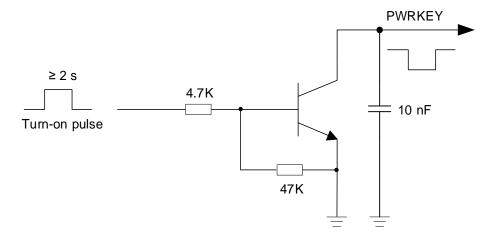



Figure 9: Turn On Module Using Driving PWRKEY

Another way to control the PWRKEY is using a button directly. When you are pressing the button, electrostatic strike may be generated from finger. Therefore, you must place a TVS nearby the button for ESD protection. A reference circuit is shown in the following figure.

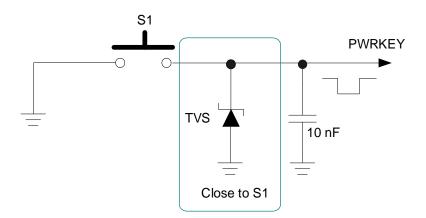



Figure 10: Turn On Module Using Button

If you need the automatic turn-on function, pull the PWRKEY down to the ground. The resistance is recommended to be less than 1 k $\Omega$ , but ensure that the VBAT voltage is lower than 0.5 V before power-on.



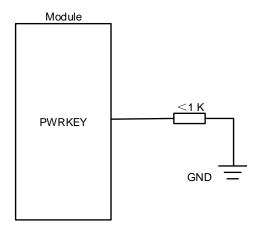



Figure 11: Turn On Module Automatically

The turn-on timing is illustrated in the following figure.

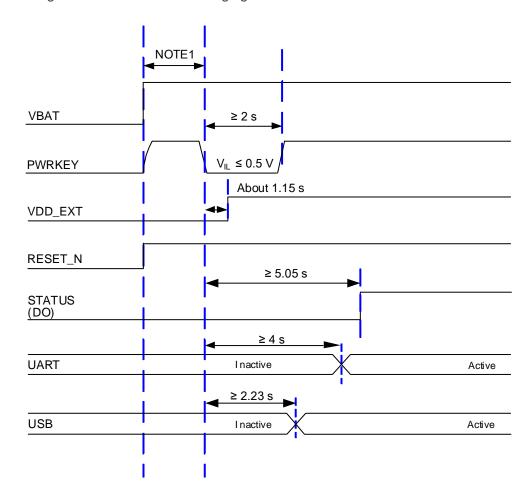



Figure 12: Turn-on Timing



#### **NOTE**

- 1. Ensure the voltage of VBAT is stable for at least 30 ms before driving the PWRKEY low.
- 2. When pulling down PWRKEY to GND by using a resistor, the module will not boot automatically after being turned off with the API. In this case, it is necessary to forcibly disconnect the VBAT power supply and turn on the module again. Therefore, it is recommended to use a control circuit to control PWRKEY to turn on/off the module instead of keeping the PWRKEY connected to GND.
- 3. Pay special attention to the following two power-on scenarios:
  - In the scenario where USB\_VBUS is connected first (or has always been connected), VBAT is
    powered on later, and then PWRKEY is pulled down to start up the module, it is necessary to
    ensure that VBAT is powered on stably for at least 2 s before PERKEY is pulled down;
  - In the scenario where VBAT is powered on first (or has always been powered on), USB\_VBUS
    is connected later, and then PWRKEY is pulled down to start up the module, it is necessary to
    ensure that USB\_VBUS is connected for at least 2 s before PWRKEY is pulled down.
- 4. Ensure that the VBAT voltage is lower than 0.5 V before power-on.

#### 3.7. Turn Off

Both the following methods can be used to turn off the module:

- Use the PWRKEY pin.
- Use *ql\_power\_down()*. For more details about the API function, see *document [6]*.

#### 3.7.1. Turn Off with PWPKEY

Drive the PWRKEY pin low for at least 3 s and then release PWRKEY, and the module executes power-down procedure. The turn-off timing is illustrated in the following figure.



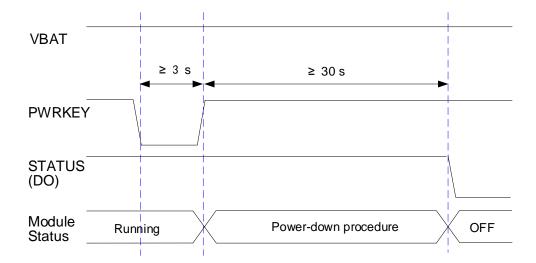



Figure 13: Turn-off Timing

# 3.7.2. Turn Off with ql\_power\_down()

It is also a safe way to use *ql\_power\_down()* to turn off the module, which is similar to turning off the module via the PWRKEY pin.

#### **NOTE**

- 1. To avoid corrupting the data in the internal flash, do not switch off the power supply to turn off the module when the module works normally. Only after turning off the module with PWRKEY or API function can you cut off the power supply.
- 2. During the shutdown, the module will log out of the network. The time for logging out relates to its network status. Thus, pay attention to the shutdown time in your design because the actual shutdown time varies according to the network status.

#### 3.8. Reset

The RESET\_N pin can be used to reset the module. The module can be reset by driving the RESET\_N pin low for at least 100 ms and then releasing it. The RESET\_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.



Table 11: Pin Definition of RESET\_N

| Pin Name | Pin No. | I/O | Description       | Comment                                                                              |
|----------|---------|-----|-------------------|--------------------------------------------------------------------------------------|
| RESET_N  | 17      | DI  | Resets the module | VBAT power domain. Active low. A test point is recommended to be reserved if unused. |

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or a button can be used to control the RESET\_N.

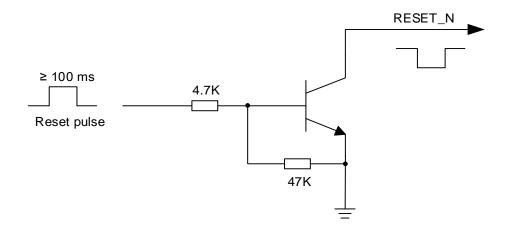



Figure 14: Reference Circuit of RESET\_N by Using Driving Circuit

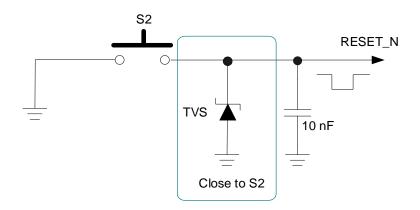



Figure 15: Reference Circuit of RESET\_N by Using Button

The reset timing is illustrated in the following figure.



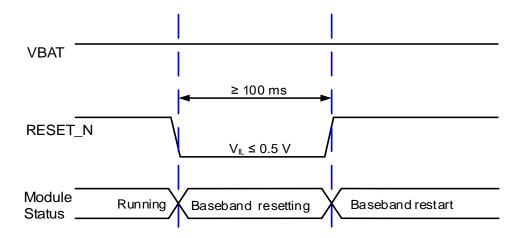



Figure 16: Reset Timing

# **NOTE**

- 1. Ensure the capacitance on PWRKEY and RESET\_N does not exceed 10 nF.
- 2. Use RESET\_N only when you fail to turn off the module with *ql\_power\_down()* and PWRKEY.



# **4** Application Interfaces

## 4.1. USB Interface

The module provides an integrated Universal Serial Bus (USB) interface, which complies with the USB 2.0 specification and supports full-speed (12 Mbps) and high-speed (480 Mbps) modes. The USB interface can only serve as a slave device.

The USB interface can be used for data transmission, software debugging and firmware upgrade.

**Table 12: Pin Definition of USB Interface** 

| Pin Name | Pin No. | I/O | Description               | Comment                                                                        |
|----------|---------|-----|---------------------------|--------------------------------------------------------------------------------|
| USB_VBUS | 8       | AI  | USB connection detect     | Input voltage range: 3.5 V–5.25 V. A test point must be reserved.              |
| USB_DP   | 9       | AIO | USB differential data (+) | USB 2.0 compliant.                                                             |
| USB_DM   | 10      | AIO | USB differential data (-) | Requires differential impedance of 90 $\Omega$ . Test points must be reserved. |

Test points must be reserved for debugging and it is recommended to use USB interface for firmware upgrade in your design. The following figure shows a reference circuit of USB interface.



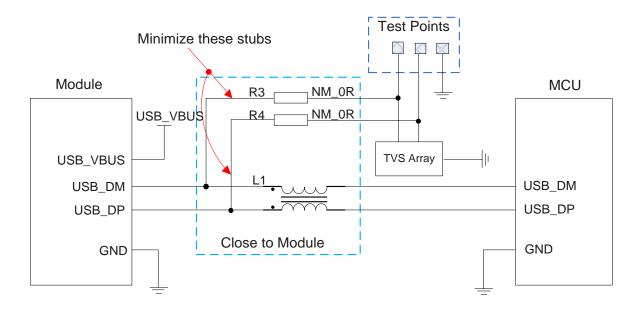



Figure 17: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and your MCU to suppress EMI spurious transmission. Meanwhile, the 0  $\Omega$  resistors (R3 and R4) should be added in series between the module and the test points to facilitate debugging, and the resistors are not mounted by default. To ensure the signal integrity of USB data traces, L1, R3, and R4 must be placed close to the module, and resistors R3 and R4 should be placed close to each other. The extra stubs of traces must be as short as possible.

When designing the USB interface, you should follow the following principles to meet USB 2.0 specification.

- Route the USB signal traces as differential pairs in inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below. The impedance of USB differential traces is  $90 \Omega$ .
- Do not route signal traces under or near crystals, oscillators, magnetic devices, and RF signal traces.
- Pay attention to the selection of the TVS array on the USB data traces. Its stray capacitance should not exceed 2 pF and should be placed as close as possible to the USB connector.

For more details about the USB 2.0 specifications, visit <a href="http://www.usb.org/home">http://www.usb.org/home</a>.

# 4.2. USB BOOT

The module provides a USB\_BOOT interface. Pull up USB\_BOOT to VDD\_EXT before turning on the module, and then the module will enter the emergency download mode. In this mode, the module supports firmware upgrade over USB interface.



Table 13: Pin Definition of USB\_BOOT

| Pin Name | Pin No. | I/O | Description                                   | Comment                                                                                                                                                                                                        |
|----------|---------|-----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB_BOOT | 75      | DI  | Force the module into emergency download mode | <ul><li>1.8 V power domain. Active high.</li><li>A circuit that can set the module into emergency download mode should be reserved during design.</li><li>It is recommended to reserve a test point.</li></ul> |

The following figure shows a reference circuit of USB\_BOOT.

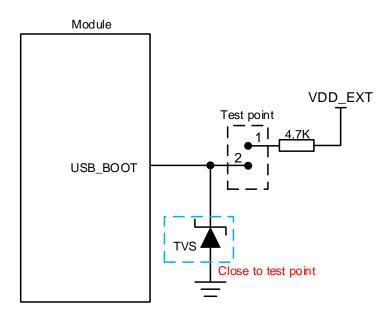



Figure 18: Reference Circuit of USB\_BOOT

# 4.3. (U)SIM Interfaces

The module provides two (U)SIM interfaces that support Dual SIM Single Standby. The (U)SIM interfaces meet ETSI requirement and IMT-2000 specification. Either 1.8 V or 3.0 V (U)SIM card is supported.

Table 14: Pin Definition of (U)SIM Interfaces

| Pin Name  | Pin No. | I/O | Description               | Comment                                                                                           |
|-----------|---------|-----|---------------------------|---------------------------------------------------------------------------------------------------|
| USIM1_VDD | 43      | РО  | (U)SIM1 card power supply | Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module. |



| USIM1_DATA | 45 | DIO | (U)SIM1 card data            |                                                                                                   |
|------------|----|-----|------------------------------|---------------------------------------------------------------------------------------------------|
| USIM1_CLK  | 46 | DO  | (U)SIM1 card clock           |                                                                                                   |
| USIM1_RST  | 44 | DO  | (U)SIM1 card reset           |                                                                                                   |
| USIM1_DET  | 42 | DI  | (U)SIM1 card hot-plug detect | 1.8 V power domain.<br>If unused, keep it open.                                                   |
| USIM1_GND  | 47 | -   | Specified ground for (U)SIM1 |                                                                                                   |
| USIM2_VDD  | 87 | РО  | (U)SIM2 card power supply    | Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module. |
| USIM2_DATA | 86 | DIO | (U)SIM2 card data            |                                                                                                   |
| USIM2_CLK  | 84 | DO  | (U)SIM2 card clock           |                                                                                                   |
| USIM2_RST  | 85 | DO  | (U)SIM2 card reset           |                                                                                                   |
| USIM2_DET  | 83 | DI  | (U)SIM2 card hot-plug detect | <ul><li>1.8 V power domain.</li><li>A test point must be reserved for debugging.</li></ul>        |
|            |    |     |                              |                                                                                                   |

The module supports (U)SIM card hot-plug via the USIM\_DET pin and both high- and low-level detections are supported. See *document* [7] for details on configuring the hot-plug detection function.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.

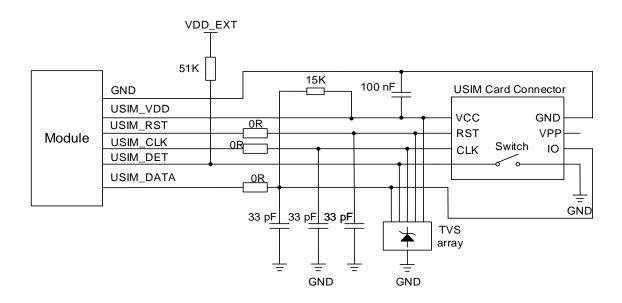



Figure 19: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector



If (U)SIM card detection function is not needed, please keep USIM\_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

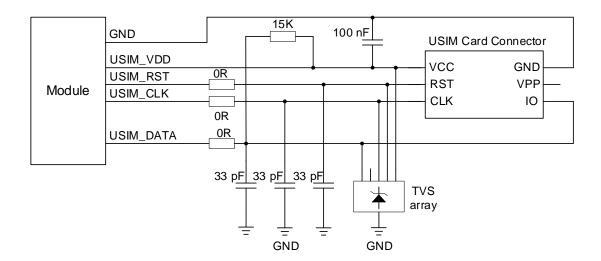



Figure 20: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, follow the criteria below in (U)SIM circuit design:

- Place (U)SIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.
- Keep (U)SIM card signals away from RF and power supply traces.
- Ensure the bypass capacitor between USIM\_VDD and GND is less than 1 μF, and the capacitor should be close to the (U)SIM card connector.
- To avoid cross-talk between USIM\_DATA and USIM\_CLK, keep them away from each other and shield them with surrounded ground.
- To offer good ESD protection, it is recommended to add a TVS array of which the parasitic capacitance should be less than 15 pF. Add 0 Ω resistors in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors are used for filtering RF interference. Additionally, keep the (U)SIM peripheral circuit close to the (U)SIM card connector.
- The pull-up resistor on USIM\_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

#### **4.4. UART**

The module provides three UART interfaces: main UART, debug UART, and auxiliary UART. Their features are described as follows.



- Main UART: supports baud rates 4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, and 921600 bps, and the default is 115200 bps. It supports RTS and CTS hardware flow control. This interface is used for data transmission.
- Debug UART: supports 921600 bps baud rate only. It is used for log output and Linux console. It can only be used as a debugging UART and cannot be used as a general UART.
- Auxiliary UART: the baud rate is the same as that of the main UART.

**Table 15: Pin Definition of Main UART** 

| Pin Name    | Pin No. | I/O | Description                   | Comment                                    |
|-------------|---------|-----|-------------------------------|--------------------------------------------|
| MAIN_CTS    | 36      | DO  | Clear to send signal from the | Connect to MCU's CTS.  1.8 V power domain. |
| IVIAII\_C13 | 30      | DO  | module                        | If unused, keep it open.                   |
|             |         |     | Request to send signal to the | Connect to MCU's RTS.                      |
| MAIN_RTS    | 37      | DI  | module                        | 1.8 V power domain.                        |
|             |         |     |                               | If unused, keep it open.                   |
| MAIN_RXD    | 34      | DI  | Main UART receive             | 1.8 V power domain.                        |
| MAIN_TXD    | 35      | DO  | Main UART transmit            | If unused, keep them open.                 |

**Table 16: Pin Definition of Debug UART** 

| Pin Name | Pin No. | I/O | Description         | Comment                                                         |
|----------|---------|-----|---------------------|-----------------------------------------------------------------|
| DBG_RXD  | 22      | DI  | Debug UART receive  | 1.8 V power domain.                                             |
| DBG_TXD  | 23      | DO  | Debug UART transmit | <ul> <li>Test points must be reserved for debugging.</li> </ul> |

**Table 17: Pin Definition of Auxiliary UART** 

| Pin Name | Pin No. | I/O | Description             | Comment                    |
|----------|---------|-----|-------------------------|----------------------------|
| AUX_TXD  | 27      | DO  | Auxiliary UART transmit | 1.8 V power domain.        |
| AUX_RXD  | 28      | DI  | Auxiliary UART receive  | If unused, keep them open. |

The module provides 1.8 V UART interfaces. Use a level-shifting circuit if the application is equipped with a 3.3 V UART interface.

A voltage-level translator TXS0104EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.



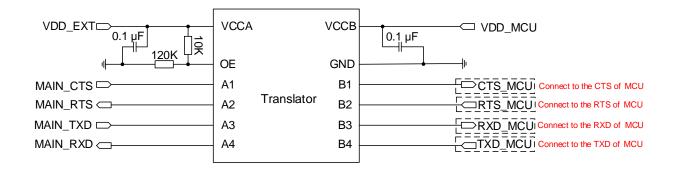



Figure 21: Reference Circuit with Voltage-level Translator

Visit <a href="http://www.ti.com">http://www.ti.com</a> for more information.

Another example with level-shifting circuit is shown as follows. For the design of circuits in dotted lines, please refer to that of the circuits in solid lines, but pay attention to the direction of connection.

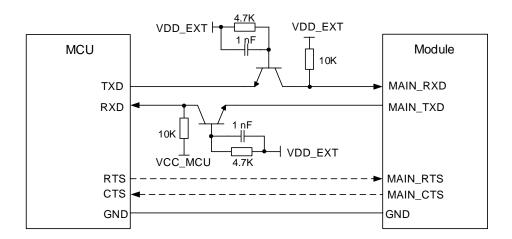



Figure 22: Reference Circuit with Transistor Circuit

#### **NOTE**

- 1. Transistor circuit is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module CTS is connected to the host CTS, and the module RTS is connected to the host RTS.



#### 4.5. PCM and I2C Interfaces

The module provides one I2C interface and one pulse code modulation (PCM) interface. The PCM interface of the module only supports slave mode; The clock signal of the external codec IC needs to be provided externally.

PCM interface supports the short frame mode and the module can be used as the slave mode only. In short frame mode, PCM\_CLK = the number of channels × PCM\_SYNC × 16 bit, where the number of channels supports 1–4 channels, but the module will only take the data on the first channel; PCM\_SYNC is equal to the audio sampling rate, which supports 8–44.1 kHz.

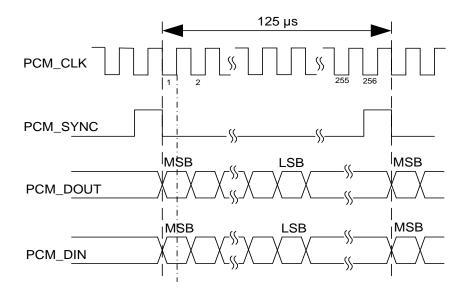



Figure 23: Timing of PCM Mode

**NOTE** 

The clocks of PCM\_SYNC and PCM\_CLK are provided by the external codec IC, but the provided PCM\_SYNC frequency must be equal to the sampling frequency of the audio file played by the module.

Table 18: Pin Definition of I2C and PCM Interfaces

| Pin Name | Pin No. | I/O | Description      | Comment                                      |
|----------|---------|-----|------------------|----------------------------------------------|
| I2C_SCL  | 40      | OD  | I2C serial clock | External 1.8 V pull-up resistor is required. |
| I2C_SDA  | 41      | OD  | I2C serial data  | If unused, keep them open.                   |
| PCM_DIN  | 6       | DI  | PCM data input   | 1.8 V power domain.                          |



| PCM_DOUT | 7 | DO | PCM data output     | If unused, keep them open.  Supports slave mode only. |
|----------|---|----|---------------------|-------------------------------------------------------|
| PCM_SYNC | 5 | DI | PCM data frame sync | Supporte state inicus study.                          |
| PCM_CLK  | 4 | DI | PCM clock           | _                                                     |

The following figure shows a reference design of I2C and PCM interfaces with an external codec IC.

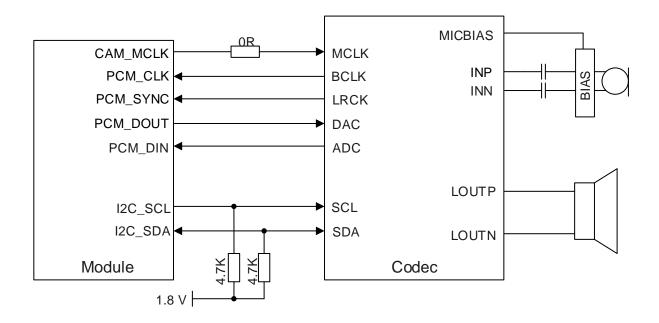



Figure 24: Reference Circuit of I2C and PCM Application with Audio Codec

## **NOTE**

- 1. It is recommended to reserve a termination resistor and a filter capacitor on the PCM traces (especially on the CAM\_MCLK and PCM\_CLK traces).
- 2. The I2C interface supports simultaneous connection of multiple peripherals except for codec IC. In other words, if a codec IC has been mounted on the I2C bus, no other peripherals can be mounted; if there is no codec IC on the bus, multiple peripherals can be mounted.

# 4.6. Analog Audio Interfaces

The module provides one analog audio input channel and two analog audio output channels. The pin definition is shown in the following table.



**Table 19: Pin Definition of Analog Audio Interfaces** 

| Pin Name | Pin No. | I/O | Description                          | Comment                    |
|----------|---------|-----|--------------------------------------|----------------------------|
| MIC_N    | 119     | AI  | Microphone analog input (-)          | If unused keep them onen   |
| MICBIAS  | 120     | РО  | Bias voltage output for microphone   | If unused, keep them open. |
| SPK_P    | 121     | AO  | Analog audio differential output (+) | If upused keep them onen   |
| SPK_N    | 122     | AO  | Analog audio differential output (-) | If unused, keep them open. |
| MIC_P    | 126     | Al  | Microphone analog input (+)          |                            |
| HP_L     | 123     | AO  | Headphone left channel output        | If upused keep them open   |
| HP_R     | 124     | AO  | Headphone right channel output       | If unused, keep them open. |
| HP_DET   | 125     | DI  | Headphone hot-plug detect            | _                          |

- Al channels are differential input channels, which can be applied for input of microphone (usually an electret microphone is used).
- AO channels are differential output channels. SPK\_P/\_N can be applied for output of handset, earpiece and loudspeaker. HP\_L/\_R can be applied for the output of headphone. (The module has no built-in PA, the analog audio output SPK\_P/\_N can be directly used as earpiece, and if connected with external PA, it can be used as loudspeaker.)

## 4.6.1. Microphone Interface Design

The microphone channel reference circuit is shown in the following figure.



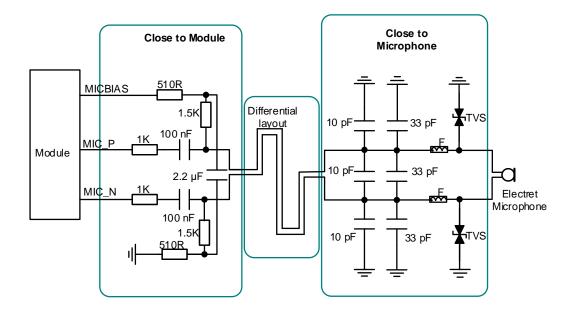



Figure 25: Reference Design for Microphone Interface

NOTE

MIC channel is sensitive to ESD, so it is not recommended to remove the ESD protection components used for protecting the MIC.

# 4.6.2. Earpiece Interface Design

The earpiece channel reference circuit is shown in the following figure:

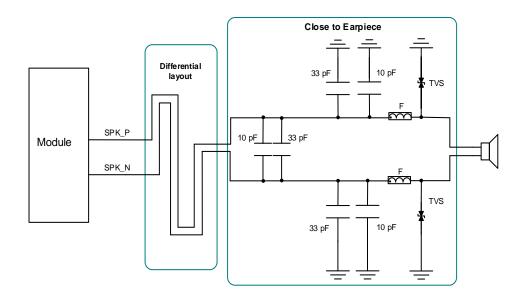



Figure 26: Reference Design for Earpiece Interface



### 4.6.3. Headphone Interface Design

The headphone channel reference circuit is shown in the following figure:

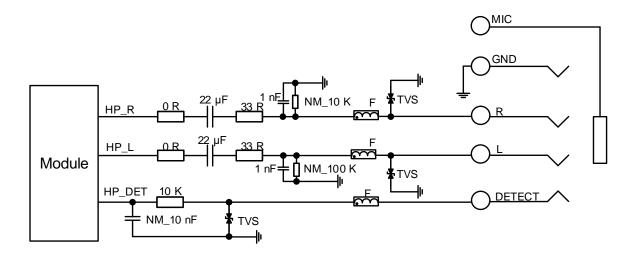



Figure 27: Reference Design for Headphone Interface

#### 4.6.4. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g., 10 pF and 33 pF) to filter out RF interference, thus reducing TDD noise. Without these capacitors, TDD noise could be heard during the call. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you need to discuss with your capacitor vendors to choose the most suitable capacitor to filter out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required. The filter capacitor on the PCB should be placed near the audio devices or audio interfaces as close as possible, and the trace should be as short as possible. The filter capacitor should be passed before reaching other connection points.

To decrease signal interferences, RF antennas should be placed away from audio interfaces and audio traces. Power traces and audio traces should not be parallel, and they should be far away from each other.

The differential audio traces must be routed according to the differential signal layout rule.



#### 4.7. ADC Interfaces

The module provides two analog-to-digital converter (ADC) interfaces. To improve the measurement accuracy of ADC, surround the traces of ADC with ground.

Table 20: Pin Definition of ADC Interfaces

| Pin Name | Pin No. | I/O  | Description                    | Comment                        |
|----------|---------|------|--------------------------------|--------------------------------|
| ADC0     | 24      | Λ.Ι. | Conoral nurnosa ADC interferes | It is recommended to reserve a |
| ADC1     | 2       | - AI | General-purpose ADC interface  | If unused, keep them open.     |

**Table 21: Characteristics of ADC Interfaces** 

| Parameter              | Min. | Тур. | Max. | Unit |
|------------------------|------|------|------|------|
| ADC[0:1] Voltage Range | 0    | -    | VBAT | V    |
| ADC Resolution         | -    | 12   | -    | bits |

You can use  $ql\_adc\_get\_volt()$  to read the voltage of ADC interfaces. See **document [8]** for details. The mapping between  $ql\_adc\_channel\_id$  and ADC channels is as follows:

Table 22: Mapping Between q\_adc\_channel\_id and ADC channel

| ql_adc_channel_id | ADC Channel |
|-------------------|-------------|
| QL_ADC0_CHANNEL   | ADC0        |
| QL_ADC1_CHANNEL   | ADC1        |

# NOTE

- 1. The input voltage of ADC should not exceed its corresponding voltage range.
- 2. It is prohibited to directly supply any voltage to ADC interface when the module is not powered by the VBAT.
- 3. Considering the difference of ADC voltage range among Quectel modules, when it is necessary to use ADC pins, it is strongly recommended to reserve the voltage divider circuit for better compatibility with other Quectel modules. The resistance of the divider must be less than 100 k $\Omega$ , otherwise the measurement accuracy of the ADC will be significantly reduced. When the divider



circuit is not used, the ADC pins require 1 k $\Omega$  resistors in series.

## 4.8. SPI

The module provides one SPI that only supports master mode. The voltage domain is 1.8 V. The maximum clock frequency is 25 MHz.

Table 23: Pin Definition of SPI

| Pin Name | Pin No. | I/O | Description     | Comment                                                                         |  |
|----------|---------|-----|-----------------|---------------------------------------------------------------------------------|--|
| SPI_CLK  | 26      | DO  | SPI clock       |                                                                                 |  |
| SPI_CS   | 25      | DO  | SPI chip select | 1.8 V power domain.                                                             |  |
| SPI_DIN  | 88      | DI  | SPI data input  | <ul><li>If unused, keep them open.</li><li>Supports master mode only.</li></ul> |  |
| SPI_DOUT | 64      | DO  | SPI data output |                                                                                 |  |

#### NOTE

- When the general 4-wire SPI interface is used for connecting external NOR flash, it supports basic flash operations such as read, write and erase, file systems, wear leveling, FOTA upgrade and preset files. It can be used only for storage purpose and cannot be used to run code.
- When the general 4-wire SPI interface is used for connecting external NAND flash, it supports
  basic flash operations such as read, write and erase, file systems and wear leveling. It does not
  support FOTA upgrade and preset files. it can be used only for storage purpose and cannot be
  used to run code.

#### 4.9. External Flash Interface

The module supports connection to an external flash chip, and the external flash interface is multiplexed from other pins. Pin assignments are described in the figure below.



Table 24: Multiplexing Function Definition of External Flash Interface

| Pin Name | Pin No. | Multiplexing Function | I/O | Description                |
|----------|---------|-----------------------|-----|----------------------------|
| PCM_DIN  | 6       | SPI_FLASH1_SIO_0      | DIO | External flash data bit 0  |
| PCM_DOUT | 7       | SPI_FLASH1_SIO_1      | DIO | External flash data bit 1  |
| PCM_SYNC | 5       | SPI_FLASH1_CS         | DO  | External flash chip select |
| PCM_CLK  | 4       | SPI_FLASH1_CLK        | DO  | External flash clock       |
| PSM_IND  | 1       | SPI_FLASH1_SIO_2      | DIO | External flash data bit 2  |
| STATUS   | 20      | SPI_FLASH1_SIO_3      | DIO | External flash data bit 3  |

Pins 4–7, 1, 20 can be multiplexed into a dedicated SPI interface for connecting external 6-wire NOR flash or NAND flash.

- When the dedicated SPI interface is used for connecting external NOR flash, it supports file system, wear leveling, FOTA upgrade and preset files. It can be used only for storage purpose and cannot be used to run code.
- When the dedicated SPI interface is used for connecting external NAND flash, it supports basic flash
  operations such as read, write and erase, file systems and wear leveling. It does not support FOTA
  upgrade and preset files. it can be used only for storage purpose and cannot be used to run code.

See **document [9]** for the design details of the two interface circuits.

#### **NOTE**

- 1. Pins 4–7 can also be multiplexed into a general SPI interface for connecting external 4-wire flash and other peripherals.
- 2. See *document [1]* for details about pin multiplexing of the module.

#### 4.10. LCM Interface

The LCM interface of the module supports the LCD display with a maximum resolution of  $320 \times 240$  pixel, DMA transmission, as well as 16-bit RGB565 and YUV formats.



**Table 25: Pin Definition of LCM Interface** 

| Pin Name     | Pin No. | I/O | Description                               | Comment                                                                                                                              |  |
|--------------|---------|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| LCD_TE       | 92      | DI  | LCD tearing effect                        |                                                                                                                                      |  |
| LCD_RST      | 107     | DO  | LCD reset                                 |                                                                                                                                      |  |
| LCD_SEL      | 108     | DO  | Reserved                                  |                                                                                                                                      |  |
| LCD_SPI_CS   | 16      | DO  | LCD chip select                           | 1.8 V power domain.  If unused, keep them open.                                                                                      |  |
| LCD_SPI_CLK  | 105     | DO  | LCD clock                                 |                                                                                                                                      |  |
| LCD_SPI_RS   | 106     | DO  | LCD register select                       |                                                                                                                                      |  |
| LCD_SPI_DOUT | 116     | DIO | LCD data                                  |                                                                                                                                      |  |
| LCD_ISINK    | 109     | PI  | Sink current input. Backlight adjustment. | It is driven by the current sink method and connected to the backlight cathode; the brightness can be adjusted with current control. |  |

# NOTE

- The recommended value of LCD digital power LCD\_VDDIO should be designed as Vnom = 1.8 V
   200 mA.
- The recommended value of LCD analog power LCD\_AVDD should be designed as Vnom = 2.8 V
   200 mA.

# 4.11. SD Card Interface

The module provides an SD card interface compliant with SD 2.0 specification and its partial pins can be multiplexed from other pins.

**Table 26: Multiplexing Function Definition of SD Card Interface** 

| Pin Name   | Pin<br>No. | Multiplexing Function | I/O | Description      | Comment                    |  |
|------------|------------|-----------------------|-----|------------------|----------------------------|--|
| W_DISABLE# | 18         | SDIO1_DATA2           | DIO | SDIO1 data bit 2 | 3.2 V power domain.        |  |
| AP_READY   | 19         | SDIO1_DATA3           | DIO | SDIO1 data bit 3 | If unused, keep them open. |  |



| MAIN_DTR  | 30  | SDIO1_DATA0 | DIO | SDIO1 data bit 0        |                                              |
|-----------|-----|-------------|-----|-------------------------|----------------------------------------------|
| MAIN_DCD  | 38  | SDIO1_CMD   | DIO | SD card command         |                                              |
| MAIN_RI   | 39  | SDIO1_DATA1 | DIO | SDIO1 data bit 1        |                                              |
| SDIO1_CLK | 110 | -           | DO  | SD card clock           | _                                            |
| SD_DET    | 104 | -           | DI  | SD card hot-plug detect | 1.8 V power domain. If unused, keep it open. |

The reference design circuit is shown in the figure below.

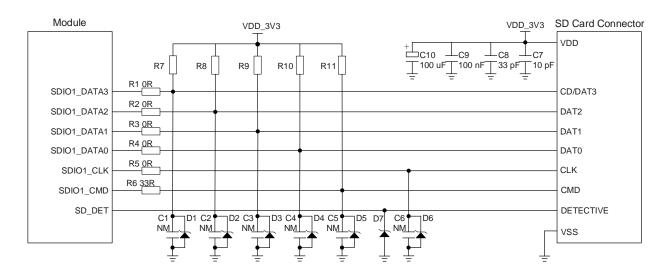



Figure 28: SD Card Interface Reference Design

To ensure good performance and reliability of the SD card, the following principles are recommended in the circuit design of the SD card interface.

- SD card needs to be powered externally. The voltage range of VDD\_3V3 is 2.7–3.6 V and it should provide at least 800 mA current. The recommended nominal value of VDD\_3V3 is 3.2 V.
- To avoid the jitter of bus, it is necessary to reserve pull-up resistors R7–R11 on the SDIO signal traces. The recommended value is  $4.7~\mathrm{k}\Omega$  and they are not mounted by default. The pull-up power supply can be the external power supply VDD\_3V3 whose voltage is  $3.2~\mathrm{V}$ .
- To adjust signal quality, it is necessary to add resistors R1–R6 in series between the module and the SD card connector. The recommended value for R1–R5 is 0 Ω, and for R6 is 33 Ω. The bypass capacitors C1–C6 are reserved and not mounted by default. The resistors and capacitors should be placed close to the module when placing the PCB.
- For good ESD protection, it is recommended to add a TVS on each SD card pin, and place them as close to the SD card connector as possible. The parasitic capacitance of TVS should be less than 15 pF.
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits and analog signals, as well as noise signals such as clock and DC-DC signals.



- Route SDIO signals with ground surrounded. The impedance of SDIO data traces should be kept at  $50 \Omega \pm 10 \%$ .
- Keep the space between SDIO signal traces and other signal traces greater than twice the trace width and ensure that the bus capacitance is less than 15 pF.
- Keep the trace length difference among SDIO1\_CLK, SDIO1\_DATA[0:3] and SDIO1\_CMD less than 1 mm and the total routing length should be less than 50 mm.

## 4.12. Camera Interface

The module provides one camera interface supporting cameras up to 0.3 MP, and supports SPI two-data-line data transmission.

**Table 27: Pin Definition of Camera Interface** 

| Pin Name      | Pin No. | I/O | Description                    | Comment                                                               |  |
|---------------|---------|-----|--------------------------------|-----------------------------------------------------------------------|--|
| CAM_I2C_SCL   | 103     | OD  | I2C clock of camera            | Pull each of them up to 1.8 V power domain with an external resistor. |  |
| CAM_I2C_SDA   | 114     | OD  | I2C data of camera             | If unused, keep them open.                                            |  |
| CAM_MCLK      | 95      | DO  | Master clock of camera         |                                                                       |  |
| CAM_SPI_CLK   | 78      | DI  | SPI clock of camera            |                                                                       |  |
| CAM_SPI_DATA0 | 97      | DI  | SPI data 0 of camera           | 1.8 V power domain.                                                   |  |
| CAM_SPI_DATA1 | 98      | DI  | SPI data 1 of camera           | If unused, keep them open.                                            |  |
| CAM_PWDN      | 115     | DO  | Power down of camera           |                                                                       |  |
| CAM_RST       | 111     | DO  | Reset of camera                |                                                                       |  |
| CAM_VDD       | 94      | РО  | Analog power supply of camera  | Power supply of camera.  If unused, keep them open.                   |  |
| CAM_VDDIO     | 93      | РО  | Digital power supply of camera |                                                                       |  |

#### **NOTE**

If the camera interface is not required, pins 103 and 114 can be used as an I2C interface to connect other peripherals.



# 4.13. Indication Signals

**Table 28: Pin Definition of Indication Signals** 

| Pin Name   | Pin No. | I/O | Description                                    | Comment                    |
|------------|---------|-----|------------------------------------------------|----------------------------|
| STATUS     | 20      | DO  | Indicates the module's operation status        | 1.8 V power domain.        |
| NET_STATUS | 21      | DO  | Indicates the module's network activity status | If unused, keep them open. |

# 4.13.1. **NET\_STATUS**

The network indication pin NET\_STATUS can drive the network status indicator. The following table describes its working states in different network status.

**Table 29: Working States of Network Connection Status/Activity Indication** 

| Pin Name   | State                                    | Network Status                 |
|------------|------------------------------------------|--------------------------------|
|            | Flicker slowly (200 ms high/1800 ms low) | Network searching              |
| NET STATUS | Flicker quickly (234 ms high/266 ms low) | Registered on network and idle |
| NET_STATUS | Flicker rapidly (63 ms high /62 ms low)  | Data transmission is ongoing   |
|            | Always high                              | Voice calling                  |



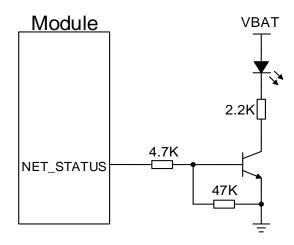



Figure 29: Reference Circuit of Network Status Indication

## 4.13.2. STATUS

The STATUS pin indicates the module's operation status. It will output high level when module is powered on successfully. A reference circuit is shown as below.

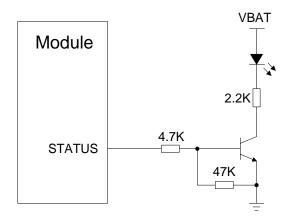



Figure 30: Reference Circuit of STATUS



# **5** RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

The module provides a main antenna interface, a Bluetooth/Wi-Fi Scan antenna interface and a GNSS antenna interface. The antenna interfaces have an impedance of 50  $\Omega$ .

## 5.1. Main Antenna and Bluetooth/Wi-Fi Scan Antenna

#### 5.1.1. Antenna Interface & Frequency Bands

Table 30: Pin Definition of Main and Bluetooth/Wi-Fi Scan Antenna Interfaces

| Pin Name             | Pin No. | I/O        | Description                                      | Comment                                                                                                                                                                |
|----------------------|---------|------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANT_MAIN             | 60      | AIO        | Main antenna interface                           | 50 $\Omega$ characteristic impedance.                                                                                                                                  |
| ANT_BT/WIFI_<br>SCAN | 56      | AIO/<br>AI | Shared interface for<br>Bluetooth and Wi-Fi Scan | Bluetooth and Wi-Fi Scan cannot be used simultaneously; Wi-Fi Scan antenna can only receive but not transmit.  50 Ω characteristic impedance. If unused, keep it open. |

# NOTE

The module supports both Wi-Fi Scan and Bluetooth functions. However, as the antenna interface is shared, the two functions cannot be used simultaneously. Additionally, Bluetooth and Wi-Fi Scan functions are optional. For details, contact Quectel Technical Support.



**Table 31: Operating Frequency (Unit: MHz)** 

| GSM850       824-849       869-894         EGSM900       880-915       925-960         DCS1800       1710-1785       1805-1880         PCS1900       1850-1910       1930-1990         LTE-FDD B1       1920-1980       2110-2170         LTE-FDD B2       1850-1910       1930-1990         LTE-FDD B3       1710-1785       1805-1880         LTE-FDD B4       1710-1755       2110-2155         LTE-FDD B5       824-849       869-894         LTE-FDD B7       2500-2570       2620-2690         LTE-FDD B8       880-915       925-960         LTE-FDD B12       699-716       729-746         LTE-FDD B13       777-787       746-756         LTE-FDD B16       815-830       860-875         LTE-FDD B17       704-716       734-746         LTE-FDD B19       830-845       875-890         LTE-FDD B20       832-862       791-821         LTE-FDD B26       1850-1915       1930-1995         LTE-FDD B26       814-850       859-894         LTE-FDD B26       1710-1780       2110-2180         LTE-FDD B34       2010-2025       2010-2025 | Operating Frequency | Transmit  | Receive   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------|
| DCS1800       1710–1785       1805–1880         PCS1900       1850–1910       1930–1990         LTE-FDD B1       1920–1980       2110–2170         LTE-FDD B2       1850–1910       1930–1990         LTE-FDD B3       1710–1785       1805–1880         LTE-FDD B4       1710–1755       2110–2155         LTE-FDD B5       824–849       869–894         LTE-FDD B7       2500–2570       2620–2690         LTE-FDD B8       880–915       925–960         LTE-FDD B12       699–716       729–746         LTE-FDD B13       777–787       746–756         LTE-FDD B16       815–830       860–875         LTE-FDD B18       815–830       860–875         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                            | GSM850              | 824–849   | 869–894   |
| PCS1900 1850–1910 1930–1990  LTE-FDD B1 1920–1980 2110–2170  LTE-FDD B2 1850–1910 1930–1990  LTE-FDD B3 1710–1785 1805–1880  LTE-FDD B4 1710–1755 2110–2155  LTE-FDD B5 824–849 869–894  LTE-FDD B7 2500–2570 2620–2690  LTE-FDD B8 880–915 925–960  LTE-FDD B12 699–716 729–746  LTE-FDD B13 777–787 746–756  LTE-FDD B17 704–716 734–746  LTE-FDD B18 815–830 860–875  LTE-FDD B19 830–845 875–890  LTE-FDD B20 832–862 791–821  LTE-FDD B26 814–850 859–894  LTE-FDD B28 703–748 758–803  LTE-FDD B28 703–748 758–803  LTE-FDD B28 703–748 758–803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EGSM900             | 880–915   | 925–960   |
| LTE-FDD B1 1920-1980 2110-2170  LTE-FDD B2 1850-1910 1930-1990  LTE-FDD B3 1710-1785 1805-1880  LTE-FDD B4 1710-1755 2110-2155  LTE-FDD B5 824-849 869-894  LTE-FDD B7 2500-2570 2620-2690  LTE-FDD B8 880-915 925-960  LTE-FDD B12 699-716 729-746  LTE-FDD B13 777-787 746-756  LTE-FDD B17 704-716 734-746  LTE-FDD B18 815-830 860-875  LTE-FDD B19 830-845 875-890  LTE-FDD B20 832-862 791-821  LTE-FDD B26 814-850 859-894  LTE-FDD B28 703-748 758-803  LTE-FDD B28 170-1780 2110-2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DCS1800             | 1710–1785 | 1805–1880 |
| LTE-FDD B2 1850–1910 1930–1990  LTE-FDD B3 1710–1785 1805–1880  LTE-FDD B4 1710–1755 2110–2155  LTE-FDD B5 824–849 869–894  LTE-FDD B7 2500–2570 2620–2690  LTE-FDD B8 880–915 925–960  LTE-FDD B12 699–716 729–746  LTE-FDD B13 777–787 746–756  LTE-FDD B17 704–716 734–746  LTE-FDD B18 815–830 860–875  LTE-FDD B19 830–845 875–890  LTE-FDD B20 832–862 791–821  LTE-FDD B26 814–850 859–894  LTE-FDD B28 703–748 758–803  LTE-FDD B28 703–748 758–803  LTE-FDD B66 1710–1780 2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PCS1900             | 1850–1910 | 1930–1990 |
| LTE-FDD B3 1710-1785 1805-1880  LTE-FDD B4 1710-1755 2110-2155  LTE-FDD B5 824-849 869-894  LTE-FDD B7 2500-2570 2620-2690  LTE-FDD B8 880-915 925-960  LTE-FDD B12 699-716 729-746  LTE-FDD B13 777-787 746-756  LTE-FDD B17 704-716 734-746  LTE-FDD B18 815-830 860-875  LTE-FDD B19 830-845 875-890  LTE-FDD B20 832-862 791-821  LTE-FDD B25 1850-1915 1930-1995  LTE-FDD B26 814-850 859-894  LTE-FDD B28 703-748 758-803  LTE-FDD B66 1710-1780 2110-2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LTE-FDD B1          | 1920–1980 | 2110–2170 |
| LTE-FDD B4       1710–1755       2110–2155         LTE-FDD B5       824–849       869–894         LTE-FDD B7       2500–2570       2620–2690         LTE-FDD B8       880–915       925–960         LTE-FDD B12       699–716       729–746         LTE-FDD B13       777–787       746–756         LTE-FDD B17       704–716       734–746         LTE-FDD B18       815–830       860–875         LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                     | LTE-FDD B2          | 1850–1910 | 1930–1990 |
| LTE-FDD B5       824-849       869-894         LTE-FDD B7       2500-2570       2620-2690         LTE-FDD B8       880-915       925-960         LTE-FDD B12       699-716       729-746         LTE-FDD B13       777-787       746-756         LTE-FDD B17       704-716       734-746         LTE-FDD B18       815-830       860-875         LTE-FDD B19       830-845       875-890         LTE-FDD B20       832-862       791-821         LTE-FDD B25       1850-1915       1930-1995         LTE-FDD B26       814-850       859-894         LTE-FDD B28       703-748       758-803         LTE-FDD B66       1710-1780       2110-2180                                                                                                                                                                                                                                                                                                                                                                                                        | LTE-FDD B3          | 1710–1785 | 1805–1880 |
| LTE-FDD B7       2500–2570       2620–2690         LTE-FDD B8       880–915       925–960         LTE-FDD B12       699–716       729–746         LTE-FDD B13       777–787       746–756         LTE-FDD B17       704–716       734–746         LTE-FDD B18       815–830       860–875         LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LTE-FDD B4          | 1710–1755 | 2110–2155 |
| LTE-FDD B8       880–915       925–960         LTE-FDD B12       699–716       729–746         LTE-FDD B13       777–787       746–756         LTE-FDD B17       704–716       734–746         LTE-FDD B18       815–830       860–875         LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LTE-FDD B5          | 824–849   | 869–894   |
| LTE-FDD B12       699-716       729-746         LTE-FDD B13       777-787       746-756         LTE-FDD B17       704-716       734-746         LTE-FDD B18       815-830       860-875         LTE-FDD B19       830-845       875-890         LTE-FDD B20       832-862       791-821         LTE-FDD B25       1850-1915       1930-1995         LTE-FDD B26       814-850       859-894         LTE-FDD B28       703-748       758-803         LTE-FDD B66       1710-1780       2110-2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B7          | 2500–2570 | 2620–2690 |
| LTE-FDD B13       777–787       746–756         LTE-FDD B17       704–716       734–746         LTE-FDD B18       815–830       860–875         LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B8          | 880–915   | 925–960   |
| LTE-FDD B17       704–716       734–746         LTE-FDD B18       815–830       860–875         LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B12         | 699–716   | 729–746   |
| LTE-FDD B18       815–830       860–875         LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B13         | 777–787   | 746–756   |
| LTE-FDD B19       830–845       875–890         LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B17         | 704–716   | 734–746   |
| LTE-FDD B20       832–862       791–821         LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B18         | 815–830   | 860–875   |
| LTE-FDD B25       1850–1915       1930–1995         LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B19         | 830–845   | 875–890   |
| LTE-FDD B26       814–850       859–894         LTE-FDD B28       703–748       758–803         LTE-FDD B66       1710–1780       2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LTE-FDD B20         | 832–862   | 791–821   |
| LTE-FDD B28     703–748     758–803       LTE-FDD B66     1710–1780     2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LTE-FDD B25         | 1850–1915 | 1930–1995 |
| LTE-FDD B66 1710–1780 2110–2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B26         | 814–850   | 859–894   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B28         | 703–748   | 758–803   |
| LTE-TDD B34 2010–2025 2010–2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-FDD B66         | 1710–1780 | 2110–2180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-TDD B34         | 2010–2025 | 2010–2025 |
| LTE-TDD B38 2570–2620 2570–2620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTE-TDD B38         | 2570–2620 | 2570–2620 |



| LTE-TDD B39 | 1880–1920 | 1880–1920 |
|-------------|-----------|-----------|
| LTE-TDD B40 | 2300–2400 | 2300–2400 |
| LTE-TDD B41 | 2496–2690 | 2496–2690 |

## 5.1.2. Antenna Tuner Control Interfaces

The module can use GRFC (generic RF control) interfaces to control external antenna tuner.

**Table 32: Pin Definition of GRFC Interfaces** 

| Pin Name | Pin No. | I/O | Description             | Comment                    |  |
|----------|---------|-----|-------------------------|----------------------------|--|
| GRFC1    | 76      | DO  | Generic RF Controller   | If unused keep them open   |  |
| GRFC2    | 77      | DO  | - Generic Kr Controller | If unused, keep them open. |  |

Table 33: Truth Table of GRFC Interfaces (Unit: MHz)

| GRFC1 Level | GRFC2 Level | Frequency Range | Band                                                                                         |
|-------------|-------------|-----------------|----------------------------------------------------------------------------------------------|
| Low         | Low         | 699–802.9       | B12/B13/B17/B28                                                                              |
| Low         | High        | 814–893.9       | <ul><li>B5/B18/B19/B20/B26</li><li>GSM850</li></ul>                                          |
| High        | Low         | 880–959.9       | <ul><li>LTE B8</li><li>EGSM900</li></ul>                                                     |
| High        | High        | 1710–2689.9     | <ul> <li>B1/B2/B3/B4/B7/B25/B34/B38/<br/>B39/B40/B41/B66</li> <li>DCS1800/PCS1900</li> </ul> |

#### 5.1.3. Tx Power

**Table 34: RF Output Power** 

| Frequency Band | Max. RF Output Power | Min. RF Output Power |
|----------------|----------------------|----------------------|
| GSM850         | 33 dBm ±2 dB         | 5 dBm ±5 dB          |
| EGSM900        | 33 dBm ±2 dB         | 5 dBm ±5 dB          |



| DCS1800                                                                  | 30 dBm ±2 dB | 0 dBm ±5 dB |
|--------------------------------------------------------------------------|--------------|-------------|
| PCS1900                                                                  | 30 dBm ±2 dB | 0 dBm ±5 dB |
| LTE-FDD B1/B2/B3/B4/B5/B7/B8/<br>B12/B13/B17/B18/B19/B20/B25/B26/B28/B66 | 23 dBm ±2 dB | < -39 dBm   |
| LTE-TDD B34/B38/B39/B40/B41                                              | 23 dBm ±2 dB | < -39 dBm   |

# 5.1.4. Rx Sensitivity

Table 35: Conducted RF Receiver Sensitivity (Unit: dBm)

| Frequency            | Receiver Sensitivity (Typ.) Primary | - 3GPP |
|----------------------|-------------------------------------|--------|
| GSM850               | -108.6                              | -102.0 |
| EGSM900              | -108.4                              | -102.0 |
| DCS1800              | -108.1                              | -102.0 |
| PCS1900              | -108.3                              | -102.0 |
| LTE-FDD B1 (10 MHz)  | -98.2                               | -96.3  |
| LTE-FDD B2 (10 MHz)  | -98.9                               | -94.3  |
| LTE-FDD B3 (10 MHz)  | -99.0                               | -93.3  |
| LTE-FDD B4 (10 MHz)  | -98.2                               | -96.3  |
| LTE-FDD B5 (10 MHz)  | -99.3                               | -94.3  |
| LTE-FDD B7 (10 MHz)  | -96.3                               | -94.3  |
| LTE-FDD B8 (10 MHz)  | -99.2                               | -93.3  |
| LTE-FDD B12 (10 MHz) | -98.0                               | -93.3  |
| LTE-FDD B13 (10 MHz) | -99.1                               | -93.3  |
| LTE-FDD B17 (10 MHz) | -97.5                               | -93.3  |
| LTE-FDD B18 (10 MHz) | -99.0                               | -96.3  |
| LTE-FDD B19 (10 MHz) | -99.5                               | -96.3  |



| LTE-FDD B20 (10 MHz) | -98.9 | -93.3 |
|----------------------|-------|-------|
| LTE-FDD B25 (10 MHz) | -98.3 | -92.8 |
| LTE-FDD B26 (10 MHz) | -98.9 | -93.8 |
| LTE-FDD B28 (10 MHz) | -99.4 | -94.8 |
| LTE-FDD B66 (10 MHz) | -98.1 | -96.5 |
| LTE-TDD B34 (10 MHz) | -99.0 | -96.3 |
| LTE-TDD B38 (10 MHz) | -99   | -96.3 |
| LTE-TDD B39 (10 MHz) | -99.7 | -96.3 |
| LTE-TDD B40 (10 MHz) | -99.2 | -96.3 |
| LTE-TDD B41 (10 MHz) | -98.6 | -94.3 |
|                      |       |       |

# 5.1.5. Reference Design

A reference design of ANT\_MAIN and ANT\_BT/WIFI\_SCAN is shown as below. A  $\pi$ -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.

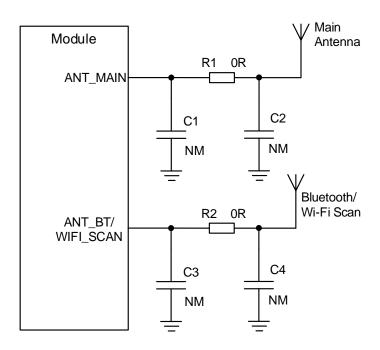



Figure 31: Reference Circuit of RF Antennas



#### **NOTE**

- 1. To improve receiver sensitivity, ensure that the clearance among antennas is appropriate.
- 2. Place the  $\pi$ -type matching components (R1, C1, C2 and R2, C3, C4) to antennas as close as possible.

# 5.2. GNSS (Optional)

GNSS information of the module is as follows:

- Supports GPS, GLONASS, BDS, Galileo, QZSS positioning system.
- Supports NMEA 0183 protocol and outputs NMEA sentences via USB interface (data update rate for positioning: 1 Hz).
- The module's GNSS function is OFF by default. It must be enabled via ql\_gnss\_switch(). See document [10] for details.

# 5.2.1. Antenna Interface & Frequency Bands

The following tables list the pin definition and frequency of the GNSS antenna interface respectively.

Table 36: Pin Definition of GNSS Antenna Interface

| Pin Name | Pin No. | I/O | Description            | Comment                                                        |
|----------|---------|-----|------------------------|----------------------------------------------------------------|
| ANT_GNSS | 49      | Al  | GNSS antenna interface | 50 $\Omega$ characteristic impedance. If unused, keep it open. |

Table 37: GNSS Frequency (Unit: MHz)

| Туре    | Frequency       |
|---------|-----------------|
| GPS     | 1575.42 ±1.023  |
| GLONASS | 1597.5–1605.8   |
| Galileo | 1575.42 ±2.046  |
| BDS     | 1561.098 ±2.046 |
| QZSS    | 1575.42 ±1.023  |



#### 5.2.2. GNSS Performance

**Table 38: GNSS Performance** 

| Parameter   | Description           | Condition             | Тур. | Unit |
|-------------|-----------------------|-----------------------|------|------|
| Sensitivity | Acquisition           | _                     | -145 |      |
|             | Reacquisition         | Autonomous            | -160 | dBm  |
|             | Tracking              | _                     | -159 |      |
|             | Cold start @ open sky | Autonomous            | 28   |      |
| TTFF        | Warm start @ open sky | Autonomous            | 28   | S    |
|             | Hot start @ open sky  | Autonomous            | 4    | _    |
| Accuracy    | CEP-50                | Autonomous @ open sky | 2.5  | m    |

# NOTE

- 1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
- 2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
- 3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

#### 5.2.3. Reference Design

A reference design of GNSS antenna is shown as below:



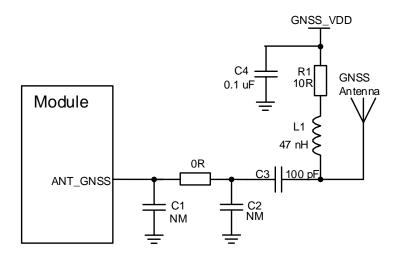



Figure 32: Reference Circuit of GNSS Antenna

#### **NOTE**

- 1. An external LDO can be selected to supply power GNSS\_VDD according to the active antenna requirement. The supply power GNSS\_VDD is recommended 3.3 V @ 30 mA.
- 2. The GNSS\_VDD circuit (C4, R1, L1) is not needed if you select a passive antenna.

# 5.3. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50  $\Omega$ . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

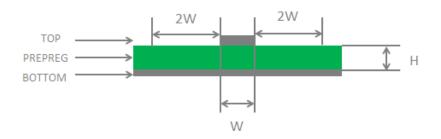



Figure 33: Microstrip Design on a 2-layer PCB



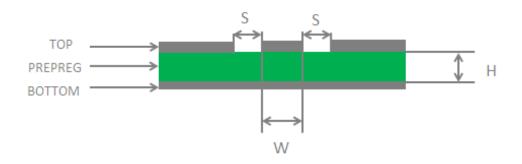



Figure 34: Coplanar Waveguide Design on a 2-layer PCB

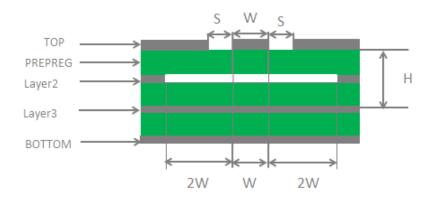



Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

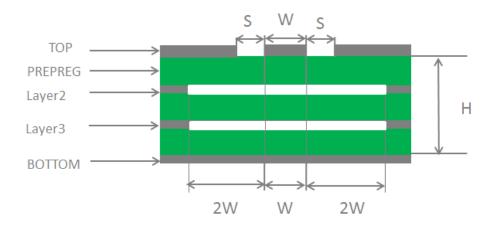



Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:



- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to  $50 \Omega$ .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [11].

# 5.4. Requirements for Antenna Design

**Table 39: Requirements for Antenna Design** 

| Туре            | Requirement                                                |
|-----------------|------------------------------------------------------------|
|                 | Frequency range: 1559–1609 MHz RHCP or linear polarization |
|                 | VSWR: ≤ 2 (Typ.)                                           |
|                 | Isolation from main antenna: > 40 dB                       |
| GNSS (Optional) | For passive antenna usage:                                 |
| GN33 (Optional) | Passive antenna gain: > 0 dBi                              |
|                 | For active antenna usage:                                  |
|                 | Active antenna noise coefficient: < 1.5 dB                 |
|                 | Active antenna gain: > 0 dBi                               |
|                 | Active antenna embedded LNA gain: < 17 dB                  |
|                 | VSWR: ≤ 2                                                  |
|                 | Efficiency: > 30 %                                         |
|                 | Max. input power: 50 W                                     |
| GSM/LTE         | Input impedance: 50 $\Omega$                               |
| GGIVI/ETE       | Cable insertion loss:                                      |
|                 | < 1 dB: LB (< 1 GHz)                                       |
|                 | < <b>1.5 dB:</b> MB (1–2.3 GHz)                            |
|                 | < 2 dB: HB (> 2.3 GHz)                                     |



# 5.5. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT receptacle provided by Hirose.

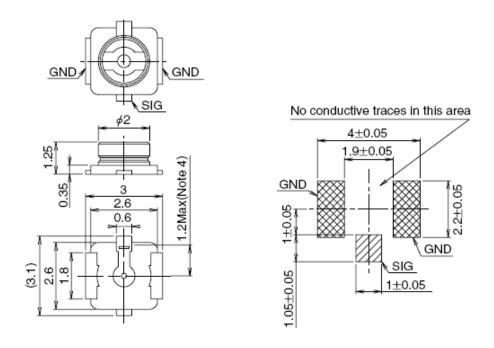



Figure 37: Dimensions of Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT.

|                  | U.FL-LP-040                  | U.FL-LP-066                                     | U.FL-LP(V)-040               | U.FL-LP-062                | U.FL-LP-088                  |
|------------------|------------------------------|-------------------------------------------------|------------------------------|----------------------------|------------------------------|
| Part No.         | 3                            | £ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4         | 3.4                          | 87                         | 38.                          |
| Mated Height     | 2.5mm Max.<br>(2.4mm Nom.)   | 2.5mm Max.<br>(2.4mm Nom.)                      | 2.0mm Max.<br>(1.9mm Nom.)   | 2.4mm Max.<br>(2.3mm Nom.) | 2.4mm Max.<br>(2.3mm Nom.)   |
| Applicable cable | Dia. 0.81mm<br>Coaxial cable | Dia. 1.13mm and<br>Dia. 1.32mm<br>Coaxial cable | Dia. 0.81mm<br>Coaxial cable | Dia. 1mm<br>Coaxial cable  | Dia. 1.37mm<br>Coaxial cable |
| Weight (mg)      | 53.7                         | 59.1                                            | 34.8                         | 45.5                       | 71.7                         |
| RoHS             | YES                          |                                                 |                              |                            |                              |

Figure 38: Specifications of Mated Plugs



The following figure describes the space factor of mated connector.

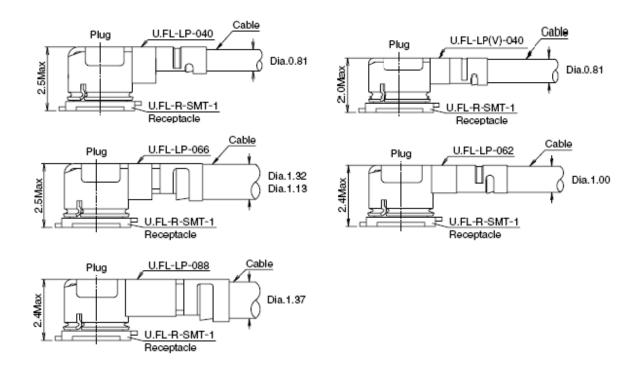



Figure 39: Space Factor of Mated Connector (Unit: mm)

For more details, please visit <a href="http://hirose.com">http://hirose.com</a>.



# **6** Electrical Characteristics and Reliability

# 6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

**Table 40: Absolute Maximum Ratings** 

| Parameter               | Min. | Max. | Unit |
|-------------------------|------|------|------|
| VBAT_RF/VBAT_BB         | -0.3 | 6.0  | V    |
| USB_VBUS                | -0.3 | 5.5  | V    |
| Peak Current of VBAT_BB | -    | 1.0  | A    |
| Peak Current of VBAT_RF | -    | 2.5  | А    |
| Voltage on Digital Pins | -0.3 | 2.3  | V    |
| Voltage at ADC0         | 0    | VBAT | V    |
| Voltage at ADC1         | 0    | VBAT | V    |

# 6.2. Power Supply Ratings

**Table 41: Power Supply Ratings** 

| Parameter | Description | Condition                      | Min. | Тур. | Max. | Unit |
|-----------|-------------|--------------------------------|------|------|------|------|
| VBAT      | VBAT_BB and | The actual input voltages must | 3.3  | 3.8  | 4.3  | \/   |
| VDAT      | VBAT_RF     | be kept between the minimum    | 5.5  | 5.0  | 4.5  | V    |



|                   |                                        | and maximum values.         |     |     |      |    |
|-------------------|----------------------------------------|-----------------------------|-----|-----|------|----|
|                   | Voltage drop during transmitting burst | Maximum power control level | -   | -   | 400  | mV |
| I <sub>VBAT</sub> | Peak supply current                    | Maximum power control level | -   | 1.7 | 2.5  | Α  |
| USB_VBUS          | USB connection detect                  | -                           | 3.5 | 5.0 | 5.25 | V  |

# 6.3. Power Consumption

**Table 42: Power Consumption** 

| Description | escription Condition                          |     | Unit |
|-------------|-----------------------------------------------|-----|------|
| OFF state   | Power down                                    | 34  | μΑ   |
|             | Minimum functionality mode (USB disconnected) | 1.4 | mA   |
|             | Minimum functionality mode (USB connected)    | 2.5 | mA   |
|             | Airplane mode (USB disconnected)              | 1.5 | mA   |
|             | Airplane mode (USB connected)                 | 2.6 | mA   |
|             | EGSM900 @ DRX = 2 (USB disconnected)          | 2.3 | mA   |
|             | EGSM900 @ DRX = 5 (USB disconnected)          | 1.8 | mA   |
| Sleep state | EGSM900 @ DRX = 5 (USB connected)             | 3.3 | mA   |
|             | EGSM900 @ DRX = 9 (USB disconnected)          | 1.6 | mA   |
|             | DCS1800 @ DRX = 2 (USB disconnected)          | 2.3 | mA   |
|             | DCS1800 @ DRX = 5 (USB disconnected)          | 1.8 | mA   |
|             | DCS1800 @ DRX = 5 (USB connected)             | 3.3 | mA   |
|             | DCS1800 @ DRX = 9 (USB disconnected)          | 1.6 | mA   |
|             | LTE-FDD @ PF = 32 (USB disconnected)          | 2.9 | mA   |
|             | LTE-FDD @ PF = 64 (USB disconnected)          | 2.1 | mA   |
|             | LTE-FDD @ PF = 64 (USB connected)             | 3.6 | mA   |



|                   | LTE-FDD @ PF = 128 (USB disconnected) | 1.7  | mA |
|-------------------|---------------------------------------|------|----|
|                   | LTE-FDD @ PF = 256 (USB disconnected) | 1.5  | mA |
|                   | LTE-TDD @ PF = 32 (USB disconnected)  | 3.0  | mA |
|                   | LTE-TDD @ PF = 64 (USB disconnected)  | 2.1  | mA |
|                   | LTE-TDD @ PF = 64 (USB connected)     | 3.6  | mA |
|                   | LTE-TDD @ PF = 128 (USB disconnected) | 1.7  | mA |
|                   | LTE-TDD @ PF = 256 (USB disconnected) | 1.5  | mA |
|                   | EGSM900 @ DRX = 5 (USB disconnected)  | 14.1 | mA |
|                   | EGSM900 @ DRX = 5 (USB connected)     | 30   | mA |
|                   | LTE-FDD @ PF = 64 (USB disconnected)  | 14.2 | mA |
| Idle state        | LTE-FDD @ PF = 64 (USB connected)     | 30.2 | mA |
|                   | LTE-TDD @ PF = 64 (USB disconnected)  | 14.3 | mA |
|                   | LTE-TDD @ PF = 64 (USB connected)     | 30.2 | mA |
|                   | LTE-FDD B1 @ 22.93 dBm                | 773  | mA |
|                   | LTE-FDD B2 @ 22.93 dBm                | 604  | mA |
|                   | LTE-FDD B3 @ 22.86 dBm                | 718  | mA |
|                   | LTE-FDD B4 @ 22.93 dBm                | 683  | mA |
|                   | LTE-FDD B5 @ 23.51 dBm                | 677  | mA |
|                   | LTE-FDD B7 @ 22.93 dBm                | 855  | mA |
| LTE data transfer | LTE-FDD B8 @ 22.79 dBm                | 669  | mA |
|                   | LTE-FDD B12 @ 22.93 dBm               | 613  | mA |
|                   | LTE-FDD B13 @ 22.93 dBm               | 623  | mA |
|                   | LTE-FDD B17 @ 22.93 dBm               | 614  | mA |
|                   | LTE-FDD B18 @ 22.93 dBm               | 661  | mA |
|                   | LTE-FDD B19 @ 22.93 dBm               | 663  | mA |
|                   | LTE-FDD B20 @ 22.93 dBm               | 712  | mA |



|                    | LTE-FDD B25 @ 22.93 dBm     | 642 | mA |
|--------------------|-----------------------------|-----|----|
|                    | LTE-FDD B26 @ 22.93 dBm     | 688 | mA |
|                    | LTE-FDD B28 @ 22.93 dBm     | 666 | mA |
|                    | LTE-FDD B66 @ 22.93 dBm     | 673 | mA |
|                    | LTE-TDD B34 @ 23.32 dBm     | 280 | mA |
|                    | LTE-TDD B38 @ 23.29 dBm     | 450 | mA |
|                    | LTE-TDD B39 @ 23.15 dBm     | 268 | mA |
|                    | LTE-TDD B40 @ 22.97 dBm     | 386 | mA |
|                    | LTE-TDD B41 @ 23.06 dBm     | 402 | mA |
|                    | GSM850 4DL/1UL @ 32.95 dBm  | 234 | mA |
|                    | GSM850 3DL/2UL @ 30.94 dBm  | 338 | mA |
|                    | GSM850 2DL/3UL @ 29.02 dBm  | 396 | mA |
|                    | GSM850 1DL/4UL @ 27.03 dBm  | 417 | mA |
|                    | EGSM900 4DL/1UL @ 32.27 dBm | 230 | mA |
|                    | EGSM900 3DL/2UL @ 31.01 dBm | 378 | mA |
|                    | EGSM900 2DL/3UL @ 29.20 dBm | 447 | mA |
|                    | EGSM900 1DL/4UL @ 27.41 dBm | 488 | mA |
| GPRS data transfer | DCS1800 4DL/1UL @ 30.95 dBm | 189 | mA |
|                    | DCS1800 3DL/2UL @ 28.76 dBm | 272 | mA |
|                    | DCS1800 2DL/3UL @ 26.64 dBm | 310 | mA |
|                    | DCS1800 1DL/4UL @ 24.35 dBm | 322 | mA |
|                    | PCS1900 4DL/1UL @ 30.17 dBm | 168 | mA |
|                    | PCS1900 3DL/2UL @ 28.08 dBm | 238 | mA |
|                    | PCS1900 2DL/3UL @ 26.13 dBm | 276 | mA |
|                    | PCS1900 1DL/4UL @ 24.10 dBm | 288 | mA |
| GSM voice call     | GSM850 PCL = 5 @ 32.88 dBm  | 239 | mA |



| GSM850 PCL = 12 @ 18.87 dBm  | 90  | mA |
|------------------------------|-----|----|
| GSM850 PCL = 19 @ 4.77 dBm   | 63  | mA |
| EGSM900 PCL = 5 @ 32.72 dBm  | 257 | mA |
| EGSM900 PCL = 12 @ 19.35 dBm | 99  | mA |
| EGSM900 PCL = 19 @ 4.82 dBm  | 64  | mA |
| DCS1800 PCL = 0 @ 30.35 dBm  | 188 | mA |
| DCS1800 PCL = 7 @ 16.39 dBm  | 80  | mA |
| DCS1800 PCL = 15 @ 1.29 dBm  | 61  | mA |
| PCS1900 PCL = 0 @ 30.06 dBm  | 172 | mA |
| PCS1900 PCL = 7 @ 16.01 dBm  | 78  | mA |
| PCS1900 PCL = 15 @ 1.29 dBm  | 61  | mA |

# 6.4. Digital I/O Characteristics

Table 43: 1.8 V I/O Requirements (Unit: V)

| Parameter       | Description         | Min.        | Max.        |
|-----------------|---------------------|-------------|-------------|
| V <sub>IH</sub> | Input high voltage  | 0.7 × VDDIO | VDDIO + 0.2 |
| V <sub>IL</sub> | Input low voltage   | -0.3        | 0.3 × VDDIO |
| VoH             | Output high voltage | VDDIO - 0.2 | -           |
| VoL             | Output low voltage  | -           | 0.2         |

Table 44: (U)SIM Low-voltage I/O Requirements (Unit: V)

| Parameter | Description        | Min.           | Max.     |
|-----------|--------------------|----------------|----------|
| USIM_VDD  | Power supply       | 1.62           | 1.98     |
| VIH       | Input high voltage | 0.7 × USIM_VDD | USIM_VDD |



| V <sub>IL</sub> | Input low voltage   | 0              | 0.2 × USIM_VDD  |
|-----------------|---------------------|----------------|-----------------|
| V <sub>OH</sub> | Output high voltage | 0.7 × USIM_VDD | USIM_VDD        |
| V <sub>OL</sub> | Output low voltage  | 0              | 0.15 × USIM_VDD |

Table 45: (U)SIM High-voltage I/O Requirements (Unit: V)

| Parameter       | Description         | Min.           | Max.            |
|-----------------|---------------------|----------------|-----------------|
| USIM_VDD        | Power supply        | 2.9            | 3.3             |
| V <sub>IH</sub> | Input high voltage  | 0.7 × USIM_VDD | USIM_VDD        |
| V <sub>IL</sub> | Input low voltage   | 0              | 0.15 × USIM_VDD |
| V <sub>OH</sub> | Output high voltage | 0.7 × USIM_VDD | USIM_VDD        |
| V <sub>OL</sub> | Output low voltage  | 0              | 0.15 × USIM_VDD |

Table 46: SDIO High-voltage I/O Requirements

| Parameter       | Description         | Min.        | Max.         |
|-----------------|---------------------|-------------|--------------|
| V <sub>IH</sub> | Input high voltage  | 0.7 × VDDIO | -            |
| V <sub>IL</sub> | Input low voltage   | -           | 0.15 × VDDIO |
| V <sub>OH</sub> | Output high voltage | 2.4 V       | VDDIO        |
| V <sub>OL</sub> | Output low voltage  | 0           | 0.3 V        |

#### 6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

The following table shows the electrostatics discharge characteristics of the module.



Table 47: Electrostatic Discharge Characteristics (Temperature: 25-30 °C, Humidity: 40 ±5 %)

| Tested Interfaces      | Contact Discharge | Air Discharge | Unit |
|------------------------|-------------------|---------------|------|
| VBAT, GND              | ±5                | ±10           | kV   |
| All Antenna Interfaces | ±4                | ±8            | kV   |
| Other Interfaces       | ±0.5              | ±1            | kV   |

## 6.6. Operating and Storage Temperatures

Table 48: Operating and Storage Temperatures (Unit: °C)

| Parameter                                | Min. | Тур. | Max. |
|------------------------------------------|------|------|------|
| Operating Temperature Range <sup>5</sup> | -35  | +25  | +75  |
| Extended Operation Range <sup>6</sup>    | -40  | +25  | +85  |
| Storage Temperature Range                | -40  | +25  | +90  |

-

<sup>&</sup>lt;sup>5</sup> Within operating temperature range, the module meets 3GPP specifications.

<sup>&</sup>lt;sup>6</sup> Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, and emergency call, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P<sub>out</sub>, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.



# **7** Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

#### 7.1. Mechanical Dimensions

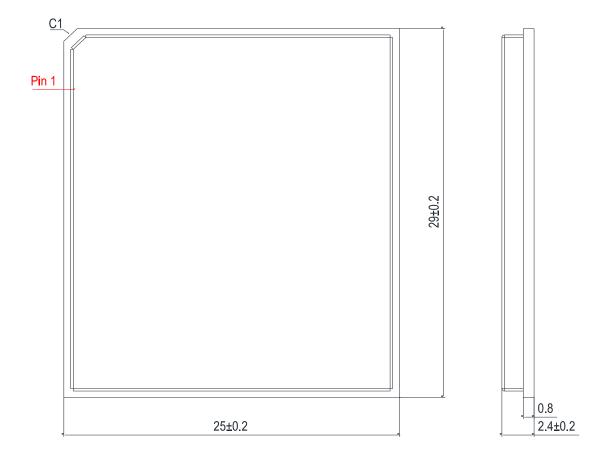
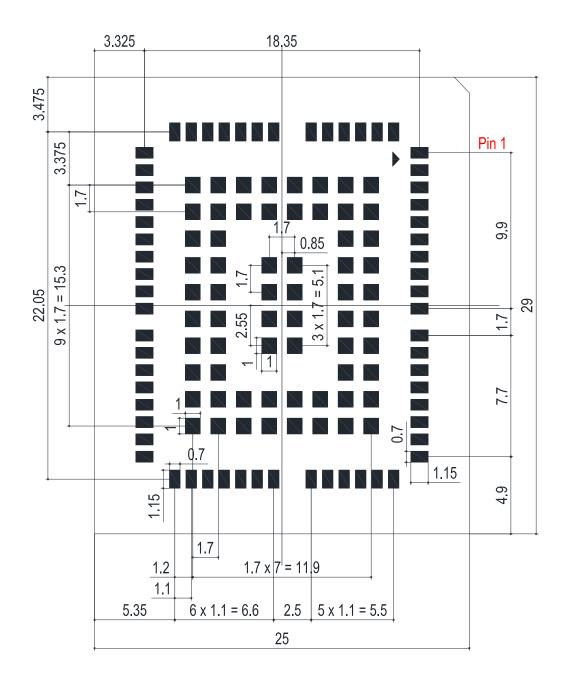
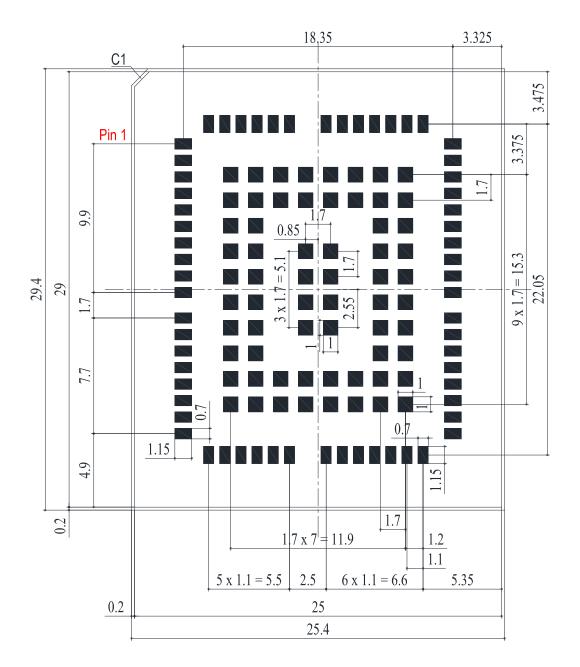



Figure 40: Module Top and Side Dimensions (Unit: mm)







Figure 41: Bottom Dimension (Bottom View)

**NOTE** 

The package warpage level of the module conforms to the *JEITA ED-7306* standard.



# 7.2. Recommended Footprint



Unlabeled tolerance: +/-0.2mm

Figure 42: Recommended Footprint (Top View)

**NOTE** 

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.



# 7.3. Top and Bottom Views

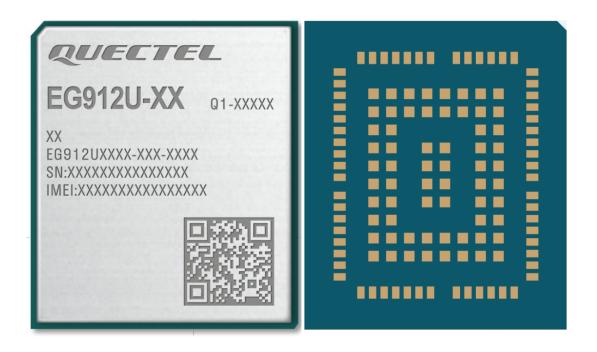



Figure 43: Top and Bottom Views

#### **NOTE**

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.



# 8 Storage, Manufacturing, and Packaging

## 8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours <sup>7</sup> in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
  - The module is not stored in Recommended Storage Condition;
  - Violation of the third requirement mentioned above;
  - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
  - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
  - The module should be baked for 8 hours at 120 ±5 °C;
  - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

<sup>&</sup>lt;sup>7</sup> This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. Do not unpack the modules in large quantities until they are ready for soldering.



#### NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

## 8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [12]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

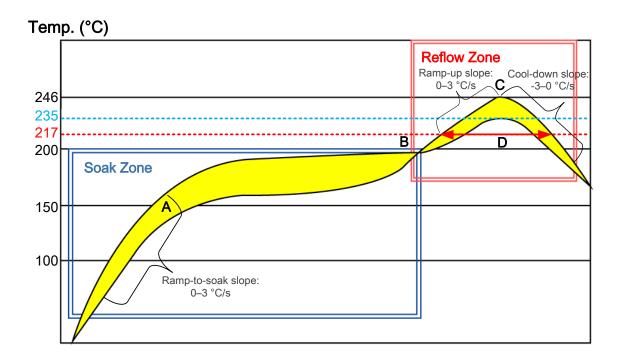



Figure 44: Recommended Reflow Soldering Thermal Profile



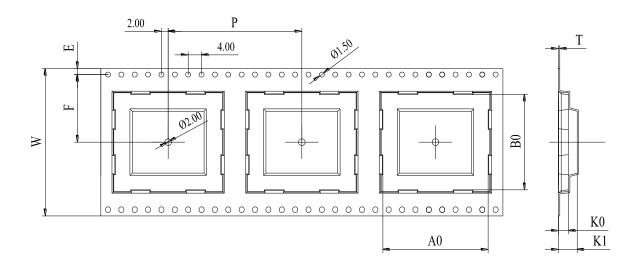
**Table 49: Recommended Thermal Profile Parameters** 

| Factor                                         | Recommendation |
|------------------------------------------------|----------------|
| Soak Zone                                      |                |
| Ramp-to-soak slope                             | 0–3 °C/s       |
| Soak time (between A and B: 150 °C and 200 °C) | 70–120 s       |
| Reflow Zone                                    |                |
| Ramp-up slope                                  | 0–3 °C/s       |
| Reflow time (D: over 217°C)                    | 40–70 s        |
| Max. temperature                               | 235–246 °C     |
| Cool-down slope                                | -3-0 °C/s      |
| Reflow Cycle                                   |                |
| Max. reflow cycle                              | 1              |

#### **NOTE**

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g., selective soldering, ultrasonic soldering) that is not mentioned in *document* [12].




# 8.3. Packaging Specifications

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts carrier tape packaging and details are as follow:

### 8.3.1. Carrier Tape

Dimension details are as follow:



**Figure 45: Carrier Tape Dimension Drawing** 

**Table 50: Carrier Tape Dimension Table (Unit: mm)** 

| W  | Р  | Т    | Α0   | В0   | K0  | K1  | F    | E    |
|----|----|------|------|------|-----|-----|------|------|
| 44 | 32 | 0.35 | 25.5 | 29.5 | 3.2 | 5.8 | 20.2 | 1.75 |



#### 8.3.2. Plastic Reel

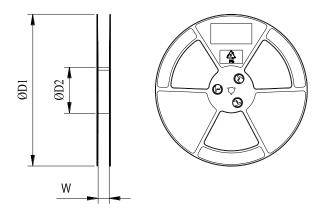
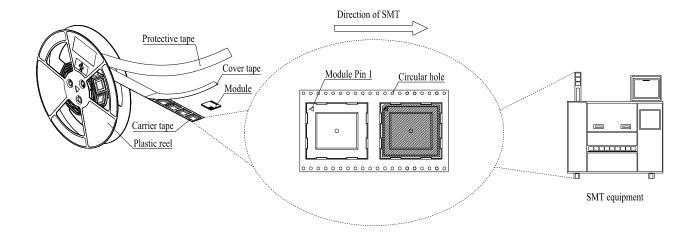
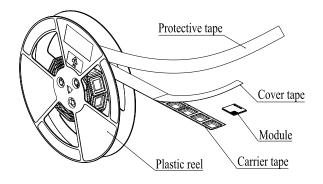




Figure 46: Plastic Reel Dimension Drawing

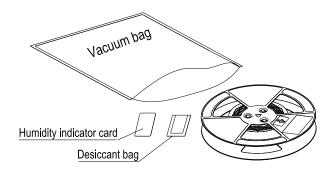
Table 51: Plastic Reel Dimension Table (Unit: mm)

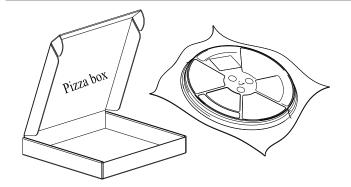
| øD1 | øD2 | W    |
|-----|-----|------|
| 330 | 100 | 44.5 |


### 8.3.3. Mounting Direction



**Figure 47: Mounting Direction** 





#### 8.3.4. Packaging Process



Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. 1 plastic reel can load 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, vacuumize it.





Place the vacuum-packed plastic reel into the pizza box.

Put 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

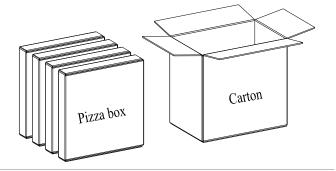



Figure 48: Packaging Process



# 9 Appendix References

#### **Table 52: Related Documents**

| Document Name                                                                             |
|-------------------------------------------------------------------------------------------|
| [1] Quectel_EG912U-GL_QuecOpen_GPIO_Configuration                                         |
| [2] Quectel_LTE_OPEN_EVB_User_Guide                                                       |
| [3] Quectel_EC200U&EG91xU_Series_QuecOpen_Device_Management_API_Reference_Manual          |
| [4] Quectel_EC200U&EG91xU_Series_QuecOpen_ Low_Power_Consumption_API_<br>Reference_Manual |
| [5] Quectel_EC200U&EG91xU_Series_QuecOpen_PSM_Application_Note                            |
| [6] Quectel_EC200U&EG91xU_Series_QuecOpen_Booting&Shutdown_Development_Guide              |
| [7] Quectel_EC200U&EG91xU_Series_QuecOpen_(U)SIM_API_Reference_Manual                     |
| [8] Quectel_EC200U&EG91xU_Series_QuecOpen_ADC_Development_Guide                           |
| [9] Quectel_EG912U-GL_QuecOpen_Reference_Design                                           |
| [10] Quectel_EC200U_Series&EG912U-GL_GNSS_ API_Reference_Manual                           |
| [11] Quectel_RF_Layout_Application_Note                                                   |
| [12] Quectel_Module_SMT_Application_Note                                                  |

#### **Table 53: Terms and Abbreviations**

| Abbreviation | Description                        |
|--------------|------------------------------------|
| 3GPP         | 3rd Generation Partnership Project |
| ADC          | Analog-to-Digital Converter        |
| AMR          | Adaptive Multi-Rate                |
| AMR-WB       | Adaptive Multi-Rate Wideband       |



| AP      | Application Processor                           |
|---------|-------------------------------------------------|
| API     | Application Programming Interface               |
| BDS     | BeiDou Navigation Satellite System              |
| bps     | bit(s) per second                               |
| CHAP    | Challenge Handshake Authentication Protocol     |
| CMUX    | Connection Multiplexing                         |
| CS      | Coding Scheme                                   |
| CTS     | Clear To Send                                   |
| DFOTA   | Delta Firmware Upgrade Over-The-Air             |
| DL      | Downlink                                        |
| DMA     | Direct Memory Access                            |
| DRX     | Discontinuous Reception                         |
| DTR     | Data Terminal Ready                             |
| EFR     | Enhanced Full Rate                              |
| ESD     | Electrostatic Discharge                         |
| ESR     | Equivalent Series Resistance                    |
| ETSI    | European Telecommunications Standards Institute |
| EVB     | Evaluation Board                                |
| FDD     | Frequency Division Duplex                       |
| FILE    | File Protocol                                   |
| FR      | Full Rate                                       |
| FTP     | File Transfer Protocol                          |
| FTPS    | FTP-SSL: FTP over SSL/FTP Secure                |
| Galileo | Galileo Satellite Navigation System (EU)        |
| GLONASS | Global Navigation Satellite System (Russia)     |
|         |                                                 |



| GNSS     | Global Navigation Satellite System                        |
|----------|-----------------------------------------------------------|
| GPRS     | General Packet Radio Service                              |
| GPS      | Global Positioning System                                 |
| GRFC     | General RF Control                                        |
| GSM      | Global System for Mobile Communications                   |
| НВ       | High Band                                                 |
| HR       | Half Rate                                                 |
| HTTP     | Hypertext Transfer Protocol                               |
| HTTPS    | Hypertext Transfer Protocol Secure                        |
| IMT-2000 | International Mobile Telecommunications 2000              |
| I/O      | Input/Output                                              |
| LB       | Low Band                                                  |
| LCM      | Liquid Crystal Monitor                                    |
| LDO      | Low-dropout Regulator                                     |
| LGA      | Land Grid Array                                           |
| LNA      | Low-Noise Amplifier                                       |
| LTE      | Long-Term Evolution                                       |
| MB       | Medium Band                                               |
| MCU      | Microcontroller Unit                                      |
| ME       | Mobile Equipment                                          |
| MLCC     | Multi-layer Ceramic Capacitor                             |
| MMS      | Multimedia Messaging Service                              |
| MQTT     | Message Queuing Telemetry Transport                       |
| MSL      | Moisture Sensitivity Levels                               |
| NITZ     | Network Identity and Time Zone/Network Informed Time Zone |
|          |                                                           |



| NMEA  | NMEA (National Marine Electronics Association) 0183 Interface Standard |
|-------|------------------------------------------------------------------------|
| NTP   | Network Time Protocol                                                  |
| PA    | Power Amplifier                                                        |
| PAM   | Power Amplifier Module                                                 |
| PAP   | Password Authentication Protocol                                       |
| PCB   | Printed Circuit Board                                                  |
| PCM   | Pulse Code Modulation                                                  |
| PDU   | Protocol Data Unit                                                     |
| PING  | Packet Internet Groper                                                 |
| PMU   | Power Management Unit                                                  |
| PPP   | Point-to-Point Protocol                                                |
| PSM   | Power Saving Mode                                                      |
| QAM   | Quadrature Amplitude Modulation                                        |
| QPSK  | Quadrature Phase Shift Keying                                          |
| QZSS  | Quasi-Zenith Satellite System                                          |
| RI    | Ring Indicator                                                         |
| RF    | Radio Frequency                                                        |
| RTS   | Ready To Send/Request to Send                                          |
| SAW   | Surface Acoustic Wave                                                  |
| SDIO  | Secure Digital Input/Output                                            |
| SMS   | Short Message Service                                                  |
| SMT   | Surface Mount Technology                                               |
| SMTP  | Simple Mail Transfer Protocol                                          |
| SMTPS | Simple Mail Transfer Protocol Secure                                   |
| SPI   | Serial Peripheral Interface                                            |
|       |                                                                        |



| SSL             | Secure Sockets Layer                        |
|-----------------|---------------------------------------------|
| TCP             | Transmission Control Protocol               |
| TDD             | Time Division Duplexing                     |
| TVS             | Transient Voltage Suppressor                |
| Tx              | Transmit/Transmission                       |
| UART            | Universal Asynchronous Receiver/Transmitter |
| UDP             | User Datagram Protocol                      |
| UL              | Uplink                                      |
| UMTS            | Universal Mobile Telecommunications System  |
| URC             | Unsolicited Result Code                     |
| USB             | Universal Serial Bus                        |
| (U)SIM          | Universal Subscriber Identity Module        |
| VBAT            | Voltage at Battery (Pin)                    |
| Vmax            | Maximum Voltage                             |
| Vnom            | Nominal Voltage                             |
| Vmin            | Minimum Voltage                             |
| V <sub>IH</sub> | High-level Input Voltage                    |
| V <sub>IL</sub> | Low-level Input Voltage                     |
| VoH             | High-level Output Voltage                   |
| V <sub>OL</sub> | Low-level Output Voltage                    |
| VSWR            | Voltage Standing Wave Ratio                 |
|                 |                                             |