

EG912N-EN QuecOpen Hardware Design

LTE Standard Module Series

Version: 1.0

Date: 2023-06-25

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The cellular terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other cellular terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Revision	Date	Author	Description
-	2022-08-16	Dylan LIU/Jeff SHEN/ Sharon LI	Creation of the document
1.0	2023-06-25	Dylan LIU/Jeff SHEN/ Sharon LI	First official release

Contents

Sa	tety Informa	ation	3
Ab	out the Doc	cument	4
Со	ntents		5
Tal	ble Index		7
Fig	jure Index		9
1	Introduction	on	11
		ecial Marks	
2	Product O	overview	12
	2.1. Fre	equency Bands and Functions	12
	2.2. Ke	y Features	13
	2.3. Fu	nctional Diagram	15
	2.4. Pir	n Assignment	16
	2.5. Pir	n Description	17
	2.6. EV	/B Kit	23
3	Operating	Characteristics	24
	3.1. Op	perating Modes	24
		eep Mode	
	3.3. Air	plane Mode	26
	3.4. Po	wer Supply	26
	3.4.1.	Power Supply Pins	26
	3.4.2.	Reference Design for Power Supply	27
	3.4.3.	Requirements for Voltage Stability	28
	3.5. Tu	rn On	29
	3.5.1.	Turn on with PWRKEY	29
	3.6. Tu	rn Off	31
	3.6.1.	Turn off with PWRKEY	31
	3.6.2.	Turn off with API	31
	3.7. Re	set	32
4	Applicatio	on Interfaces	34
	4.1. US	SB Interface	34
	4.2. US	SB_BOOT	35
	4.3. (U)	SIM Interfaces	37
	4.4. UA	\RT	39
	4.5. PC	CM and I2C Interfaces	41
	4.6. An	alog Audio Interfaces	43
	4.6.1.	Audio Interfaces Design Considerations	44
	4.6.2.	Microphone Interface Design	45
	4.6.3.	Earpiece and Loudspeaker Interface Design	45
	4.7. AD	OC Interfaces	46

	4.8.	Camera Interface	47
	4.9.	SPI	48
	4.10.	Matrix Keypad Interfaces	49
	4.11.	Indication Signal	50
	4.1	1.1. Network Status Indication	50
	4.1	1.2. STATUS	51
	4.12.	GPIOs	51
5	RF Spe	ecifications	53
	5.1.	Cellular Network	53
	5.1.	.1. Antenna Interface & Frequency Bands	53
	5.1.	.2. Transmitting Power	54
	5.1.	.3. Receiver Sensitivity	55
	5.1.	.4. Reference Design	55
	5.2.	Reference Design of RF Routing	56
	5.3.	Requirements for Antenna Design	58
	5.4.	RF Connector Recommendation	58
6	Electric	cal Characteristics & Reliability	61
	6.1.	Absolute Maximum Ratings	61
	6.2.	Power Supply Ratings	61
	6.3.	Power Consumption	62
	6.4.	Digital I/O Characteristic	64
	6.5.	ESD Protection	65
	6.6.	Operating and Storage Temperatures	65
7	Mechan	nical Information	66
	7.1.	Mechanical Dimensions	66
	7.2.	Recommended Footprint	68
	7.3.	Top and Bottom Views	69
8	Storage	e, Manufacturing & Packaging	70
	8.1.	Storage Conditions	70
	8.2.	Manufacturing and Soldering	71
	8.3.	Packaging Specifications	73
	8.3.	3.1. Carrier Tape	73
	8.3.	3.2. Plastic Reel	74
	8.3.	3.3. Mounting Direction	74
	8.3.	3.4. Packaging Process	75
9	Append	dix References	76

Table Index

Table 1: Special Marks	11
Table 2: Brief Introduction	12
Table 3: Frequency Bands and Functions	12
Table 4: Key Features	13
Table 5: I/O Parameters Definition	17
Table 6: Pin Description	17
Table 7: Overview of Operating Modes	24
Table 8: Pin Definition of Power Supply	27
Table 9: Pin Definition of PWRKEY	29
Table 10: Pin Definition of RESET_N	32
Table 11: Pin Definition of USB Interface	34
Table 12: Pin Definition of USB_BOOT	35
Table 13: Pin Definition of (U)SIM Interfaces	37
Table 14: UART Information	39
Table 15: Pin Definition of UART	40
Table 16: Pin Definition of PCM Interface	41
Table 17: Pin Definition of I2C Interface	42
Table 18: Pin Definition of Audio Interfaces	43
Table 19: Pin Definition of ADC Interfaces	46
Table 20: Characteristics of ADC Interface	47
Table 21: Pin Definition of Camera Interface	47
Table 22: Pin Definition of SPI	48
Table 23: Pin Definition of Matrix Keypad Interfaces	49
Table 24: Pin Definition of Indication Signal	50
Table 25: Working State of the Network Connection Status/Activity Indication	50
Table 26: Pin Definition of GPIOs	51
Table 27: Pin Definition of Cellular Network Interface	53
Table 28: Operating Frequency of EG912N-EN	53
Table 29: RF Transmitting Power	54
Table 30: Conducted RF Receiver Sensitivity of EG912N-EN	55
Table 31: Requirements for Antenna Design	58
Table 32: Absolute Maximum Ratings	61
Table 33: Power Supply Ratings	61
Table 34: Power Consumption	62
Table 35: 1.8 V I/O Requirements	64
Table 36: (U)SIM Low-voltage I/O Requirements	64
Table 37: (U)SIM High-voltage I/O Requirements	64
Table 38: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)	65
Table 39: Operating and Storage Temperatures	65
Table 40: Recommended Thermal Profile Parameters	72
Table 41: Carrier Tape Dimension Table (Unit: mm)	73

Table 42: Plastic Reel Dimension Table (Unit: mm)	74
Table 43: Related Documents	76
Table 44: Terms and Abbreviations	76

Figure Index

Figure 1: Functional Diagram	15
Figure 2: Pin Assignment (Top View)	16
Figure 3: DRX Run Time and Current Consumption in Sleep Mode	25
Figure 4: Sleep Mode Application without Suspend Function	25
Figure 5: Reference Design of Power Supply	27
Figure 6: Power Supply Limits during Burst Transmission	28
Figure 7: Reference Design of Power Supply	
Figure 8: Reference Circuit of Turing on with Driving Circuit	29
Figure 9: Reference Circuit of Turning on with a Button	
Figure 10: Timing Sequence of Turning on with PWRKEY	30
Figure 11: Timing Sequence of Turning off with PWRKEY	
Figure 12: Reference Circuit of RESET_N with Driving Circuit	32
Figure 13: Reference Design Circuit of RESET_N with a Button	32
Figure 14: Timing Sequence of RESET_N	33
Figure 15: Reference Circuit of USB Application	34
Figure 16: Reference Circuit of USB_BOOT	
Figure 17: Timing Sequence for Entering Emergency Download Mode	36
Figure 18: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector	38
Figure 19: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector	38
Figure 20: Reference Circuit with a Voltage-level Translator	40
Figure 21: Reference Circuit with Transistor Circuit	
Figure 22: Timing of Short Frame Mode	42
Figure 23: Reference Circuit of PCM and I2C Application with Audio Codec	43
Figure 24: Reference Circuit for Microphone Interface	45
Figure 25: Reference Circuit for Earpiece Interface	45
Figure 26: Reference Circuit of External Audio Amplifier Output	46
Figure 27: Reference Circuit of SPI (Module as Master Device)	48
Figure 28: Reference Circuit of SPI (Module as Slave Device)	49
Figure 29: Reference Circuit of the Network Status Indication	50
Figure 30: Reference Circuits of STATUS	51
Figure 31: Reference Circuit for RF Antenna Interface	56
Figure 32: Microstrip Design on a 2-layer PCB	56
Figure 33: Coplanar Waveguide Design on a 2-layer PCB	57
Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	57
Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	57
Figure 36: Dimensions of the Receptacle (Unit: mm)	59
Figure 37: Specifications of Mated Plugs	59
Figure 38: Space Factor of Mated Connectors (Unit: mm)	60
Figure 39: Module Top and Side Dimensions (Unit: mm)	66
Figure 40: Module Bottom Dimensions (Bottom View, Unit: mm)	67
Figure 41: Recommended Footprint (Top View)	68

Figure 42: Top & Bottom Views of the Module	69
Figure 43: Recommended Reflow Soldering Thermal Profile	71
Figure 44: Carrier Tape Dimension Drawing	73
Figure 45: Plastic Reel Dimension Drawing	74
Figure 46: Mounting Direction	74
Figure 47: Packaging Process	75

1 Introduction

QuecOpen[®] is a solution where the module acts as the main processor. Constant transition and evolution of both the communication technology and the market highlight its merits. It can help you to:

- Realize embedded applications' quick development and shorten product R&D cycle
- Simplify circuit and hardware structure design to reduce engineering costs
- Miniaturize products
- Reduce product power consumption
- Apply OTA technology
- Enhance product competitiveness and price-performance ratio

This document defines the EG912N-EN module in QuecOpen® solution and describes its air interfaces and hardware interfaces which are connected with your applications.

This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. The document, coupled with application notes and user guides, makes it easy to design and set up wireless applications with the module.

1.1. Special Marks

Table 1: Special Marks

Mark Definition Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, or argument, it indicates that the function, feature, interface, pin, AT command, or argument is under development and currently not supported; and the asterisk (*) after a model indicates that the sample of the model is currently unavailable.

2 Product Overview

The module is an SMD module with compact packaging, which is engineered to meet most of the demands of M2M applications, for instance:

- OTT
- CPE
- PoC
- POS
- Tracker
- Data card
- Security system
- Industrial PDA
- Metering

Table 2: Brief Introduction

EG912N-EN	
Packaging type	LGA
Pin counts	126 pins
Dimensions	$(25.0 \pm 0.2) \text{ mm} \times (29.0 \pm 0.2) \text{ mm} \times (2.4 \pm 0.2) \text{ mm}$
Weight	Approx. 3.5 g

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions

	EG912N-EN
LTE-FDD	B1/B3/B5/B7/B8/B20/B28/B31/B72
GSM	EGSM900/DCS1800

2.2. Key Features

Table 4: Key Features

Features	Details
Power Supply	Supply voltage: 3.4–4.3 V
	Typical supply voltage: 3.8 V
	 Text and PDU mode
SMS	Point-to-point MO and MT
	SMS cell broadcast
	SMS storage: (U)SIM card and ME; ME by default
	Compliant with USB 2.0 specifications (slave mode only), with
	transmission rates up to 480 Mbps
USB Interface	 Used for AT command communication, data transmission, software debugging and firmware upgrade
	 Supports USB serial driver for Windows 7/8/8.1/10/11, Linux 2.6–5.18
	and Android 4.x–13.x systems
USB_BOOT Interface	Supports one emergency download interface
(U)SIM Interface	Supports (U)SIM card: 1.8/3.0 V
	Main UART:
	 Used for data transmission and AT command communication
	Baud rate: 115200 bps by default
	Supports RTS and CTS hardware flow control
	Debug UART:
UART	Used for log output
	Baud rate: 115200 bps Auxilian LART:
	Auxiliary UART: Used for communication with peripherals
	Baud rate: 115200 bps by default
	Multiplexed from SPI_DOUT and SPI_DIN, or MAIN_CTS and
	MAIN_RTS
	Supports one digital audio interface: PCM interface
	Supports one analog input and one analog output
Audio Features	GSM: HR/FR/EFR/AMR
	LTE: AMR/AMR-WB
	 Supports echo cancellation and noise suppression
	Used for audio function with external codec
PCM Interface	 Supports 16-bit linear data format
r Givi iliteriace	 Supports short frame synchronization
	 Supports master mode

I2C Interface	One I2C interface
	Comply with I2C bus specification version
ADC Interfaces	Supports two Analog-to-Digital Converter (ADC) interfaces
	Provides one camera interface
Camera Interface	 Supports up to 0.3 MP
	Supports single data line or dual data line transmission of SPI
SPI	Supports master and slave modes, with clock rates up to 26 MHz
Matrix Keypad Interface	Supports 3 x 3 matrix keypad interface
Network Indication	NET_STATUS to indicate network connectivity status
Antenna Interface	Main antenna interface (ANT_MAIN)
Antenna interiace	50 Ω impedance
	● EGSM900: Class 4 (33 dBm ±2 dB)
	 DCS1800: Class 1 (30 dBm ±2 dB)
Transmitting Power	 EGSM900 8-PSK: Class E2 (27 dBm ±3 dB)
	 DCS1800 8-PSK: Class E2 (26 dBm ±3 dB)
	 LTE-FDD: Class 3 (23 dBm ±2 dB)
	Supports up to 3GPP Rel-9 non-CA Cat 1 FDD
LTE Features	 Supports 1.4/3/5/10/15/20 MHz RF bandwidth
	 FDD: Max. 10 Mbps (DL)/5 Mbps (UL)
	GPRS:
	 Supports GPRS multi-slot class 12
	 Coding scheme: CS 1–4
	 Max. 85.6 Kbps (DL)/85.6 Kbps (UL)
CCM Footures	EDGE:
GSM Features	 Supports EDGE multi-slot class 12
	 Supports GMSK and 8-PSK for different MCS
	 Downlink coding schemes: MCS 1–9
	 Uplink coding schemes: MCS 1–9
	 Max. 236.8 kbps (DL)/236.8 kbps (UL)
	 Supports TCP/UDP/PPP*/NTP/NITZ/FTP/HTTP/PING/CMUX*/HTTPS
Internet Protocol Features	/FTPS/SSL/FILE/MQTT/MMS*/SMTP*/SMTPS* protocols
	 Supports PAP and CHAP protocols
	Operating temperature range ¹: -35 °C to +75 °C
Temperature Range	 Extended temperature range ²: -40 °C to +85 °C
1	Storage temperature range: -40 °C to +90 °C

¹ Within the operating temperature range, the module meets 3GPP specifications.

² Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, emergency call, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

Firmware Upgrade	Use USB interface or DFOTA to upgrade
RoHS	All hardware components are fully compliant with EU RoHS directive

2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband
- RAM & Flash
- Radio frequency
- Peripheral interfaces

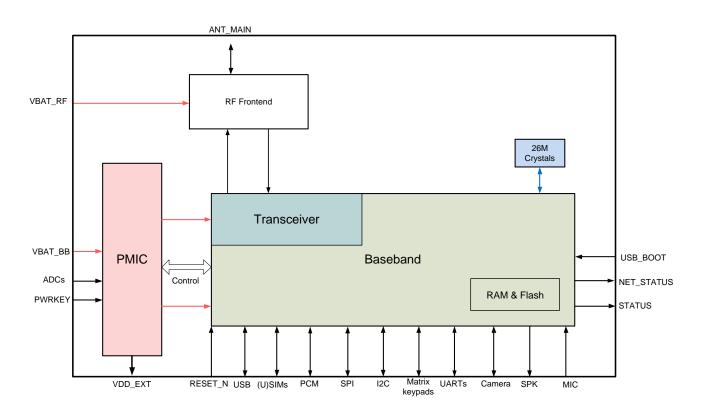


Figure 1: Functional Diagram

2.4. Pin Assignment

The following figure illustrates the pin assignment of the module.

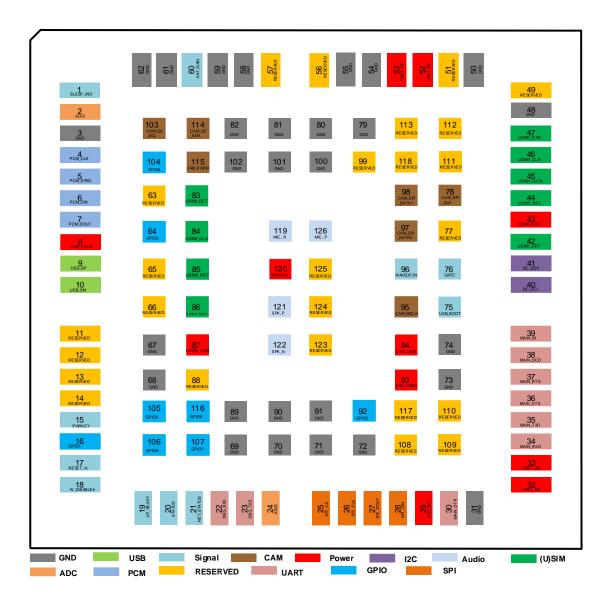


Figure 2: Pin Assignment (Top View)

NOTE

- 1. All GND pins should be connected to ground, and keep unused and RESERVED pins open.
- 2. USB_BOOT cannot be pulled up to high level before the module starts up successfully.
- 3. Ensure that there is a complete reference ground plane under the module, and the plane should be placed as close to the module layer as possible. Ensure that there is no other traces on the first layer under the module. And at least a 4-layer board design is recommended.

2.5. Pin Description

Table 5: I/O Parameters Definition

Туре	Description
AI	Analog Input
AIO	Analog Input/Output
AO	Analog Output
DI	Digital Input
DIO	Digital Input/Output
DO	Digital Output
OD	Open Drain
PI	Power Input
PO	Power Output

DC characteristics include power domain and rated current, etc.

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	Vmax = 4.3 V Vmin = 3.4 V Vnom = 3.8 V	External power supply must be provided with sufficient current of at least 0.8 A. It is recommended to add a TVS diode externally. A test point is recommended to be reserved.
VBAT_RF	52, 53	PI	Power supply for the module's RF part		External power supply must be provided with sufficient current of at least 2.2 A. It is

					recommended to add a TVS diode externally. A test point is recommended to be reserved.
VDD_EXT	29	РО	Provide 1.8 V for external circuit	Vnom = 1.8 V I _O max = 50 mA	Power supply for external GPIO's pull-up circuits. A test point is recommended to be reserved.
GND	3, 31, 48	3, 50, 5 ₀	4, 55, 58, 59, 61, 62, 6	7–74, 79–82, 89–9	1, 100–102
Turn On/Off/Reso	et				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	15	DI	Turn on/off the module		VBAT power domain. A test point is recommended to be reserved.
RESET_N	17	DI	V_{IL} max = 0.5 V Reset the module		Active low. 1.8 V power domain. A test point is recommended to be reserved if unused.
Indication Interfa	ices				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	20	DO	Indicate the module's operation status		
NET_STATUS	21	DO	Indicate the module's network activity status	1.8 V	If unused, keep them open.
SLEEP_IND	1	DO	Indicate the module's sleep mode	Indicate the module's sleep	
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	8	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V	A test point must be reserved.

				Vnom = 5.0 V	
USB_DP	9	AIO	USB differential data (+)		Requires differential impedance of 90 Ω .
USB_DM	10	AIO	USB differential		USB 2.0 compliant. Test points must be reserved.
(U)SIM Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM1_DET	42	DI	(U)SIM1 card hot- plug detect	1.8 V	If unused, keep it open.
USIM1_VDD	43	РО	(U)SIM1 card power supply	- 1.8/3.0 V	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_RST	44	DO	(U)SIM1 card reset	1.0/3.0 V	
USIM1_DATA	45	DIO	(U)SIM1 card data	_	
USIM1_CLK	46	DO	(U)SIM1 card clock	_	
USIM1_GND	47	-	Specified ground for (U)SIM1		Connect to main GND of the PCB
USIM2_DET	83	DI	(U)SIM2 card hot- plug detect	1.8 V	If unused, keep it open.
USIM2_CLK	84	DO	(U)SIM2 card clock	_	
USIM2_RST	85	DO	(U)SIM2 card reset		
USIM2_DATA	86	DIO	(U)SIM2 card data	4.0/0.0.\/	
USIM2_VDD	87	РО	(U)SIM2 card power supply	- 1.8/3.0 V	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
Main UART					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MAIN_DTR	30	DI	Main UART data terminal ready	- 1.8 V	If unused, keep them
MAIN_RXD	34	DI	Main UART receive		open.

MAIN_TXD	35	DO	Main UART transmit		
MAIN_CTS	36	DO	Clear to send signal from the module	_	Connect to MCU's CTS. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module	_	Connect to MCU's RTS. If unused, keep it open.
MAIN_DCD	38	DO	Main UART data carrier detect	_	If unused, keep them
MAIN_RI*	39	DO	Main UART ring indication		open.
Debug UART					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	22	DI	Debug UART receive	– 1.8 V	Test points must be
DBG_TXD	23	DO	Debug UART 1.0 v transmit		reserved.
I2C Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
				Onaracteristics	
I2C_SCL	40	OD	I2C serial clock	Ondracteristics	An external 1.8 V pull-
I2C_SCL I2C_SDA	40	OD OD	I2C serial clock	Onaracteristics	An external 1.8 V pull- up resistor is required. If unused, keep them open.
				Onlaracteristics	up resistor is required. If unused, keep them
I2C_SDA				DC Characteristics	up resistor is required. If unused, keep them
I2C_SDA PCM Interface	41	OD	I2C serial data	DC	up resistor is required. If unused, keep them open.
I2C_SDA PCM Interface Pin Name	41 Pin No.	OD I/O	I2C serial data Description	DC	up resistor is required. If unused, keep them open. Comment If unused, keep them
PCM Interface Pin Name PCM_CLK	41 Pin No. 4	OD I/O DO	Description PCM clock PCM data frame	DC Characteristics	up resistor is required. If unused, keep them open. Comment
PCM Interface Pin Name PCM_CLK PCM_SYNC	41 Pin No. 4 5	I/O DO	Description PCM clock PCM data frame sync	DC Characteristics	up resistor is required. If unused, keep them open. Comment If unused, keep them
PCM Interface Pin Name PCM_CLK PCM_SYNC PCM_DIN	41 Pin No. 4 5	OD I/O DO DO DI	Description PCM clock PCM data frame sync PCM data input	DC Characteristics	up resistor is required. If unused, keep them open. Comment If unused, keep them
PCM Interface Pin Name PCM_CLK PCM_SYNC PCM_DIN PCM_DOUT	41 Pin No. 4 5	OD I/O DO DO DI	Description PCM clock PCM data frame sync PCM data input	DC Characteristics	up resistor is required. If unused, keep them open. Comment If unused, keep them
I2C_SDA PCM Interface Pin Name PCM_CLK PCM_SYNC PCM_DIN PCM_DOUT Camera Interface	41 Pin No. 4 5 6 7	I/O DO DO DI DO	Description PCM clock PCM data frame sync PCM data input PCM data output	DC Characteristics	up resistor is required. If unused, keep them open. Comment If unused, keep them open.

CAM_I2C_SCL	103	OD	I2C clock of camera		Pull each of them up to 1.8 V power domain
CAM_I2C_SDA	114	OD	I2C data of camera		with external resistors. If unused, keep them open.
CAM_SPI_CLK	78	DI	SPI clock of camera	_	·
CAM_SPI_DATA0	97	DI	SPI data bit 0		If unused, keep them
CAM_SPI_DATA1	98	DI	Camera SPI data bit 1 of camera	_	open.
CAM_PWDN	115	DO	Power down of camera	-	
CAM_VDD	94	РО	Analog power supply of camera	Vnom = 2.8 V	Power supply of camera.
CAM_VDDIO	93	РО	Digital power supply of camera	Vnom = 1.8 V	If unused, keep them open.
SPI					
Pin Name	Pin No.	I/O	Description	DC Description Characteristics	
SPI_CS	25	DIO	SPI chip select		If unused, keep them
SPI_CLK	26	DIO	SPI clock		open. When the module is
SPI_DOUT	27	DO	SPI data output	-	used as master device, SPI_CS and SPI_CLK
SPI_DIN	28	DI	SPI data input	1.8 V	
RF Antenna Interfa	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	AIO	Main antenna interface		50 Ω impedance.
ADC Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC0	24	AI	General-purpose	Voltage range:	If unused, keep them
ADC1	2	AI	ADC interface	0 V-VBAT_BB	open.

Other Interfaces						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USB_BOOT	75	DI	Force the module into emergency download mode		Active high. A test point is recommended to be reserved.	
W_DISABLE#*	18	DI	Airplane mode control	1.8 V	Pull-up by default. In low voltage level, the module can enter airplane mode.	
WAKEUP_IN*	96	DI	Wake up the module	_	If unused, keep them	
AP_READY*	19	DI	Application processor ready		open.	
Analog Audio Inte	erfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
MICBIAS	120	РО	Bias voltage output for microphone			
MIC_N	119	Al	Microphone analog input (-)		If unused, keep them open.	
MIC_P	126	Al	Microphone analog input (+)			
SPK_P	121	AO	Analog audio differential output (+)		The interface can drive 32 Ω earpiece with power rate at 37 mW @	
SPK_N	122	АО	Analog audio differential output (-)		THD = 1 %. It can also be used to drive external power amplifier devices if the output power rate cannot meet the demand. If unused, keep them open.	
Antenna Tuner Co	ontrol Inter	face				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
GRFC	76	DO	Generic RF controller		If unused, keep it open.	
GPIO Interfaces						

Keep them open.

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO1	16	DIO			
GPIO2	64	DIO		1.8 V	If unused, keep them open.
GPIO3	92	DIO	_		
GPIO4	104	DIO	General-purpose		
GPIO5	105	DIO	input/output		
GPIO6	106	DIO			
GPIO7	107	DIO	_		
GPIO8	116	DIO	_		
RESERVED Pins					
Pin Name	Pin No.				Comment
RESERVED	11–14, 4	9, 51, 5	56, 57, 63, 65, 66, 77, 8	88, 99, 108–113,	Keen them onen

NOTE

RESERVED

For more information about GPIO, see *document* [2] for details.

117, 118, 123-125

2.6. EVB Kit

To help you develop applications with the module, Quectel supplies an evaluation board (LTE OPEN EVB) with accessories to control or test the module. For more details, see *document* [1].

3 Operating Characteristics

3.1. Operating Modes

Table 7: Overview of Operating Modes

Mode	Details			
Full Functionality	Idle	Software is active. The module is registered on the network and ready to send and receive data.		
Mode	Voice/Data	Network connection is ongoing. Power consumption is decided by the network setting and data transmission rate.		
Minimum Functionality Mode	<pre>ql_dev_set_modem_fun() can set the module to a minimum functionality mode.</pre> Both RF function and (U)SIM card will be invalid.			
Airplane Mode	<pre>ql_dev_set_modem_fun() can set the module to airplane mode. RF function will be invalid.</pre>			
Sleep Mode	Power consumption of the module will be reduced to a minimal level. The module can still receive paging, SMS, voice call and TCP/UDP data from network.			
Power Down Mode		down the power supply. Software is not active. However, operating ected to VBAT_BB/RF remains applied.		

NOTE

For more details about AT command, see document [2].

3.2. Sleep Mode

With DRX technology, power consumption of the module can be reduced to a minimal level.

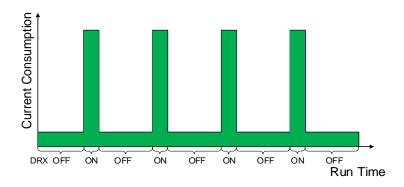


Figure 3: DRX Run Time and Current Consumption in Sleep Mode

NOTE

DRX cycle values are transmitted over the wireless network.

The following three conditions should be met to set the module into sleep mode.

- Enable sleep function through *ql_autosleep_enable()*.
- All GPIOs which can be configured as interrupt wake-up function are in non-wake-up state.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

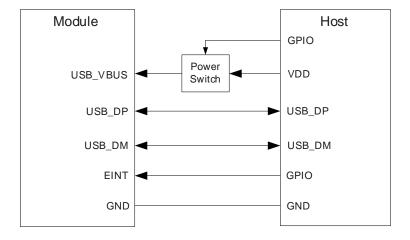


Figure 4: Sleep Mode Application without Suspend Function

You can wake up the module by turning on the power switch to power the USB_VBUS or by using GPIO to interrupt the module.

NOTE

- 1. Pay attention to the level matching shown in dotted line between the module and the host in the circuit diagrams.
- 2. For more information about the API, see document [3] for details.

3.3. Airplane Mode

When the module enters airplane mode, the RF function will be disabled, and all AT commands related to it will be inaccessible. This mode can be set via the following way.

Software:

ql_dev_set_modem_fun() provides choices of the functionality level through setting parameter *function* into 0, 1 or 4.

- QL_DEV_MODEM_MIN_FUN: Minimum functionality (disable RF function and (U)SIM function).
- QL_DEV_MODEM_FULL_FUN: Full functionality (default).
- QL_DEV_MODEM_DISBLE_TRANSMIT_AND_RECEIVE_RF_CIRCUITS: Airplane mode (disable RF transmitter and receiver circuits).

NOTE

For more information about the API, see *document [2]* for details.

3.4. Power Supply

3.4.1. Power Supply Pins

The module provides four VBAT pins dedicated to the connection with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for RF part.
- Two VBAT_BB pins for baseband part.

Table 8: Pin Definition of Power Supply

Pin Name	Pin No.	I/O	Description	Comment
VBAT_BB	32, 33	ΡI	Power supply for the module's baseband part	External power supply must be provided with sufficient current of at least 0.8 A. It is recommended to add a TVS diode externally. A test point is recommended to be reserved.
VBAT_RF	52, 53	ΡI	Power supply for the module's RF part	External power supply must be provided with sufficient current of at least 2.2 A. It is recommended to add a TVS diode externally. A test point is recommended to be reserved.

3.4.2. Reference Design for Power Supply

The performance of the module largely depends on the power source. The power supply of the module should be able to provide sufficient current of at least 3 A. If the voltage drops between input and output is not too high, it is suggested to use an LDO for the module. If the voltage difference is large, then a buck converter is suggested to use.

The following figure illustrates a reference design for +5 V input power source.

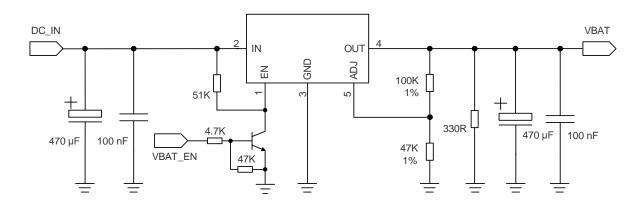


Figure 5: Reference Design of Power Supply

NOTE

To avoid corrupting the data in the internal flash, do not cut off the power supply to turn off the module when the module works normally. Only after turning off the module with PWRKEY or AT command can you cut off the power supply.

3.4.3. Requirements for Voltage Stability

The power supply range of the module is from 3.4 V to 4.3 V. Please make sure the input voltage will never drop below 3.4 V.

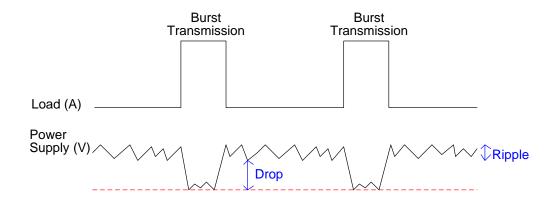


Figure 6: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100 μ F with low ESR (ESR \leq 0.7 Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved with ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to VBAT pins. The main power supply from an external application must be a single voltage source and can be expanded to two sub paths with the star configuration. The width of VBAT_BB trace should not be less than 1 mm. The width of VBAT_RF trace should not be less than 2 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, to ensure the stability of the power supply, it is necessary to add a high-power TVS diode at the front end of the power supply. Reference circuit is shown as below:

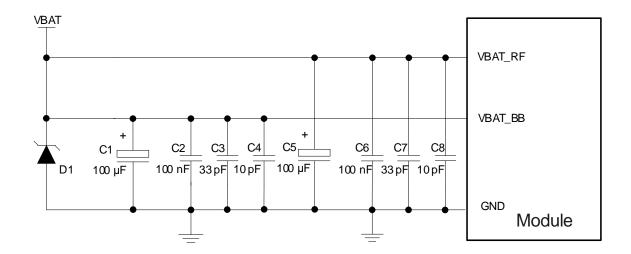


Figure 7: Reference Design of Power Supply

3.5. Turn On

3.5.1. Turn on with PWRKEY

Table 9: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	DI	Turn on/off the module	VBAT power domain. A test point is recommended to be reserved.

When the module is in power down mode, it can be turned on and enter normal operation mode by driving the PWRKEY low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY.

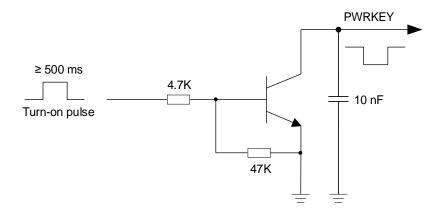


Figure 8: Reference Circuit of Turing on with Driving Circuit

Another way to control the PWRKEY is by using a button directly. When pressing the button, an electrostatic strike may be generated from finger. Therefore, a TVS diode shall be placed near the button for ESD protection.

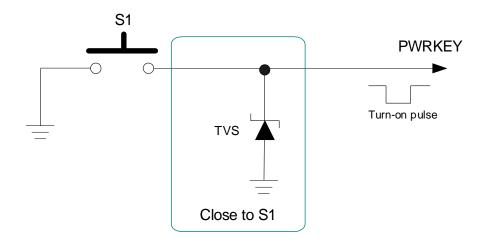


Figure 9: Reference Circuit of Turning on with a Button

The turn-on scenario is illustrated in the following figure.

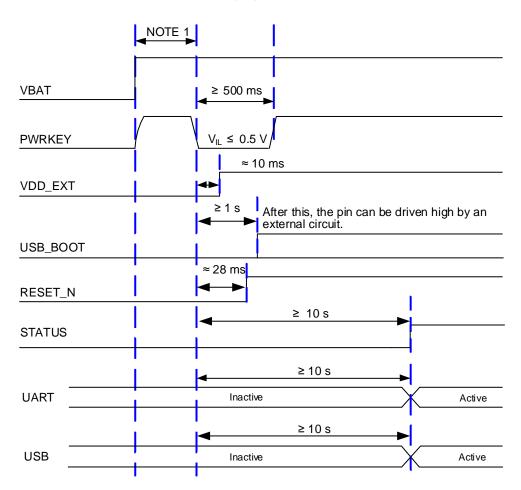


Figure 10: Timing Sequence of Turning on with PWRKEY

NOTE

- 1. Ensure that VBAT is stable for at least 30 ms before driving the PWRKEY low.
- 2. If the module needs to turn on automatically while does not need turn-off function, PWRKEY can be driven low directly to GND with a recommended $4.7 \text{ k}\Omega$ resistor.

3.6. Turn Off

3.6.1. Turn off with PWRKEY

Driving the PWRKEY to a low-level voltage for at least 650 ms, then the module will execute power-down procedure after the PWRKEY is released.

Figure 11: Timing Sequence of Turning off with PWRKEY

3.6.2. Turn off with API

It is also a safe way to use the *ql_power_down()* to turn off the module, which is similar to turning off the module via PWRKEY pin. See *document [4]* for details about the API.

NOTE

- To avoid corrupting the data in the internal flash, do not cut off the power supply when the module works normally. Only after turning offthe module with PWRKEY or API, can you cut off the power supply.
- 2. When turning off module with the API, keep PWRKEY at high level. Otherwise, the module will be turned on automatically again after successfully turn-off.

3.7. Reset

Driving the RESET_N low for at least 300 ms and then releasing it can reset the module. RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 10: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	17	DI	Reset the module	Active low. 1.8 V power domain. A test point is recommended to be reserved if unused.

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

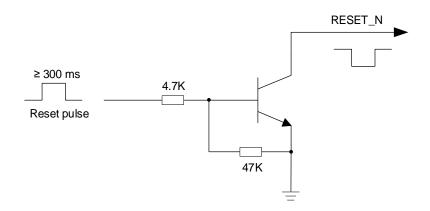


Figure 12: Reference Circuit of RESET_N with Driving Circuit

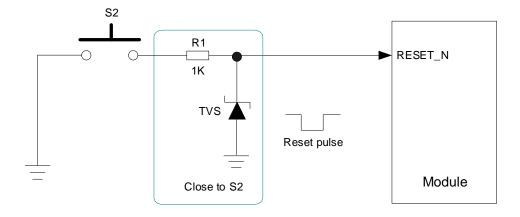


Figure 13: Reference Design Circuit of RESET_N with a Button

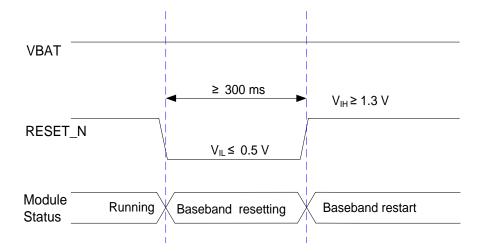


Figure 14: Timing Sequence of RESET_N

NOTE

- 1. Ensure that the capacitance on PWRKEY and RESET_N does not exceed 10 nF.
- 2. RESET_N only resets the internal baseband chip of the module and does not reset the power management chip.
- 3. Use RESET_N only when you fail to turn off the module with the API and PWRKEY.

4 Application Interfaces

4.1. USB Interface

The module provides one USB interface, which complies with USB 2.0 specifications, and supports high-Speed (480 Mbps) and full-Speed (12 Mbps) on USB 2.0. Only slave mode is supported. The USB interface can be used for AT command communication, data transmission, software debugging and firmware upgrade.

Table 11: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	AI	USB connection detect	A test point must be reserved.
USB_DP	9	AIO	USB differential data (+)	Requires differential impedance of 90 Ω. USB 2.0 compliant. Test points must be reserved.
USB_DM	10	AIO	USB differential data (-)	

Reserve test points for debugging and firmware upgrading in your designs.

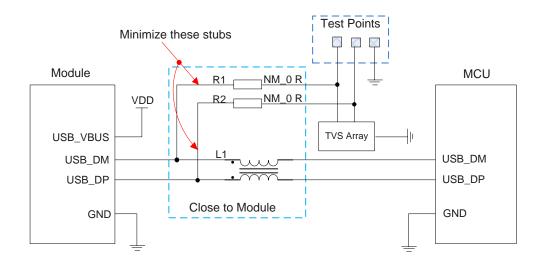


Figure 15: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and your MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R1 and R2) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. To ensure the integrity of USB data trace signal, L1, R1 and R2 components must be placed close to the module, and resistors R1 and R2 should be placed close to each other. The extra stubs of trace should be kept as short as possible.

The following principles should be complied with when designing the USB interface to meet USB specifications.

- The impedance of USB differential trace is 90 Ω. Route USB differential traces in the inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below.
- Do not route signal traces under VBAT traces, crystal-oscillators, magnetic devices, sensitive circuits and provide clearance from RF signals, analog signals, and noise signals generated by clock, DC-DC, etc.
- Pay attention to the selection of the ESD protection component on the USB data traces. Its parasitic capacitance should not exceed 2 pF and should be placed as close as possible to the USB interface.

For more details about the USB specifications, please visit http://www.usb.org/home.

4.2. USB_BOOT

The module provides a USB_BOOT pin. You can pull it up to 1.8 V or short-circuit VDD_EXT and USB_BOOT before turning on the module, thus the module will enter emergency download mode when it is turned on. In this mode, the module supports firmware upgrade over USB 2.0 interface.

Table 12: Pin Definition of USB_BOOT

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Force the module into emergency download mode	1.8 V power domain.Active high.A test point is recommended to be reserved.

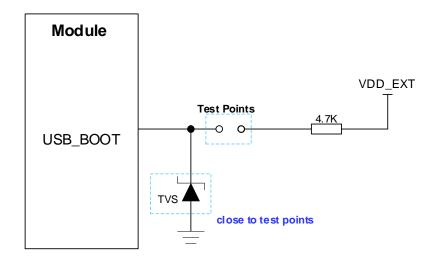


Figure 16: Reference Circuit of USB_BOOT

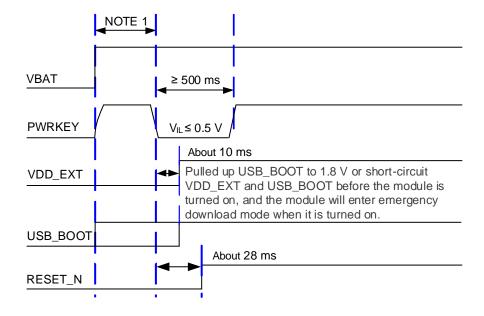


Figure 17: Timing Sequence for Entering Emergency Download Mode

NOTE

- 1. Ensure that VBAT is stable before driving PWRKEY low. The time period between powering VBAT up and driving PWRKEY low should be at least 30 ms.
- 2. When using MCU to control module to enter the emergency download mode, follow the above timing sequence. It is not recommended to pull up USB_BOOT to 1.8 V before powering up VBAT. Connect the test points as shown in *Figure 16* can manually force the module to enter emergency download mode.

4.3. (U)SIM Interfaces

The circuit of (U)SIM interfaces meet ETSI and IMT-2000 requirements. Either 1.8 V or 3.0 V (U)SIM card is supported.

Table 13: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM1_VDD	43	РО	(U)SIM1 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_RST	44	DO	(U)SIM1 card reset	
USIM1_DATA	45	DIO	(U)SIM1 card data	
USIM1_CLK	46	DO	(U)SIM1 card clock	
USIM1_GND	47	-	Specified ground for (U)SIM1	Connect to main GND of the PCB.
USIM2_DET	83	DI	(U)SIM2 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM2_CLK	84	DO	(U)SIM2 card clock	
USIM2_RST	85	DO	(U)SIM2 card reset	
USIM2_DATA	86	DIO	(U)SIM2 card data	
USIM2_VDD	87	РО	(U)SIM2 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.

The module supports USIM card hot-plug detection via the USIM_DET pin and both high- and low- level detections are supported. The function is disabled by default.

The following figure illustrates a reference design for (U)SIM card interface with an 8-pin (U)SIM card connector.

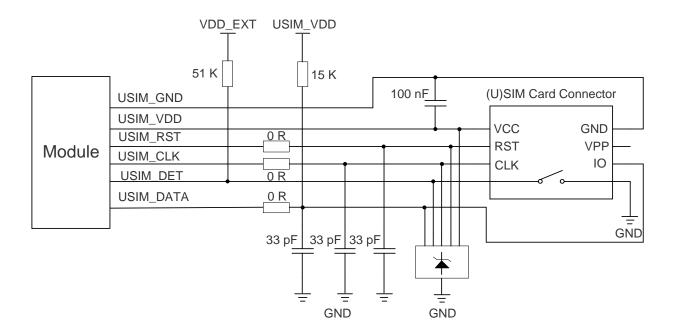


Figure 18: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM card hot-plug detection function is not needed, keep USIM_DET open.

A reference design for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

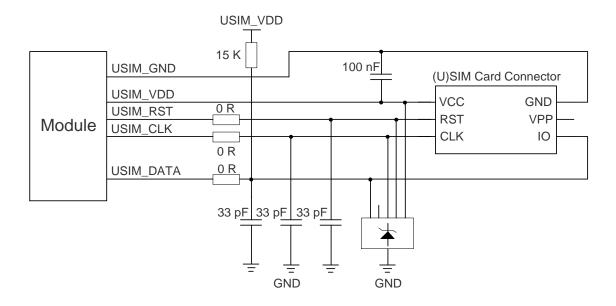


Figure 19: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, follow the criteria below in the (U)SIM circuit design:

- Place (U)SIM card connector close to the module. Keep the trace length less than 200 mm if possible. Keep (U)SIM card signals away from RF and power signals.
- Ensure the bypass capacitor between USIM_VDD and USIM_GND less than 1 μF , and place it close to the (U)SIM card connector.
- Ensure the ground between the module and the (U)SIM card connector short and wide. Keep the
 trace width of ground and USIM_VDD not less than 0.5 mm to maintain the same electric potential.
 If the ground is complete on your PCB, USIM_GND can be connected to PCB ground directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- To offer good ESD protection, it is recommended to add a TVS array of which parasitic capacitance should be less than 15 pF. The 0 Ω resistors should be added in series between the module and the (U)SIM card to facilitate debugging. Note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The 33 pF capacitors in parallel on USIM_DATA, USIM_CLK and USIM_RST lines are used for filtering RF interference.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the USIM card connector.

4.4. **UART**

The module provides three UART: Main UART, debug UART and auxiliary UART, among which the auxiliary UART function can be realized by multiplexing SPI_DOUT and MAIN_CTS, or SPI_DIN and MAIN_RTS. The following shows their features:

Table 14: UART Information

UART types	Supported Baud rates	Default Baud rates	Functions
Main UART	4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps and 1 Mbps	115200 bps	Data transmission and AT command communication
Debug UART	115200 bps	115200 bps	Log output
Auxiliary UART	4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps and 1 Mbps	115200 bps	Communication with peripherals

Table 15: Pin Definition of UART

Pin Name	Pin No.	Multiplexing Function	I/O	Description	Comment
MAIN_DTR	30	-	DI	Main UART data terminal ready	- 1.8 V power domain.
MAIN_RXD	34	-	DI	Main UART receive	If unused, keep them open.
MAIN_TXD	35	-	DO	Main UART transmit	
MAIN_CTS	36	-	DO	Clear to send signal from the module	1.8 V power domain. Connect to MCU's CTS. If unused, keep it open.
MAIN_RTS	37	-	DI	Request to send signal to the module	1.8 V power domain. Connect to MCU's RTS. If unused, keep it open.
MAIN_DCD	38	-	DO	Main UART data carrier detect	1.8 V power domain.
MAIN_RI*	39	-	DO	Main UART ring indication	If unused, keep them open.
DBG_RXD	22	-	DI	Debug UART receive	1.8 V power domain.
DBG_TXD	23	-	DO	Debug UART transmit	 Test points must be reserved.
SPI_DOUT/ MAIN_CTS	27/36	UART3_TXD	DO	Auxiliary UART transmit	1.8 V power domain.
SPI_DIN/ MAIN_RTS	28/37	UART3_RXD	DI	Auxiliary UART receive	If unused, keep them open.

The module provides 1.8 V UART. A voltage-level translator should be used between the module and MCU's UART if the application is equipped with a 3.3 V UART interface. A voltage-level translator TXS0108EPWR provided by *Texas Instruments* is recommended.

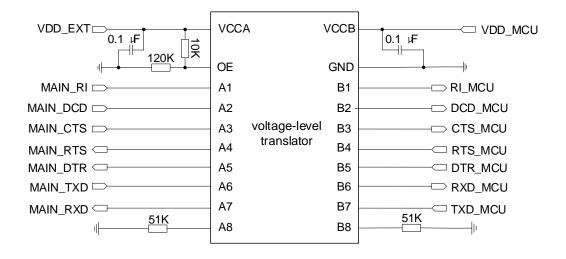


Figure 20: Reference Circuit with a Voltage-level Translator

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, please refer to that shown in solid lines, but pay attention to the direction of connection.

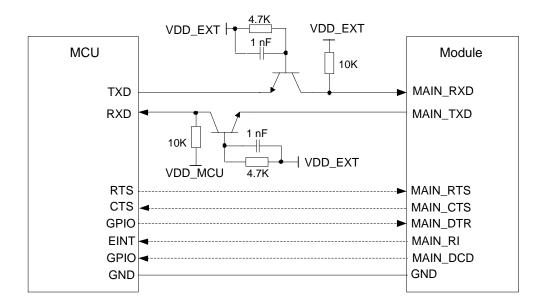


Figure 21: Reference Circuit with Transistor Circuit

NOTE

- 1. Transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.
- Please note that the module's CTS is connected to MCU's CTS, and the module's RTS is connected to MCU's RTS.
- 3. For details about multiplexing information, see document [5].

4.5. PCM and I2C Interfaces

The module provides one PCM interface and one I2C interface.

Table 16: Pin Definition of PCM Interface

Pin Name	Pin No.	I/O	Description	Comment	
PCM_CLK	4	DO	PCM clock		
PCM_SYNC	5	DO	PCM data frame sync	1.8 V power domain.	
PCM_DIN	6	DI	PCM data input	If unused, keep them open.	
PCM_DOUT	7	DO	PCM data output	_	

Table 17: Pin Definition of I2C Interface

Pin Name	Pin No.	I/O	Description	Comment
I2C_SCL	40	OD	I2C serial clock	An external 1.8 V pull-up resistor is
I2C_SDA	41	OD	I2C serial data	required.If unused, keep them open.

PCM interface supports short frame mode, module can only be used as the master device.

The module supports 16-bit linear encoding format. The following figure is the short frame mode timing diagram (PCM_SYNC = 8 kHz, PCM_CLK = 2048 kHz).

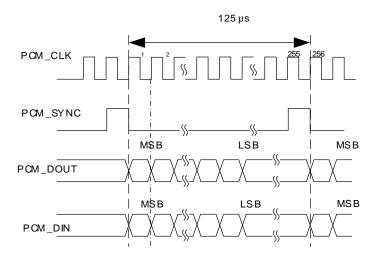


Figure 22: Timing of Short Frame Mode

In short frame mode, data is sampled on the falling edge of PCM_CLK, and sent on the rising edge. The falling edge of PCM_SYNC represents the high effective bit. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz, and 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and 4096 kHz PCM_CLK at 16 kHz PCM_SYNC.

The default configuration is short frame mode, PCM_CLK = 2048 kHz, PCM_SYNC =8 kHz.

The following figure shows a reference design of I2C and PCM interfaces with an external codec IC.

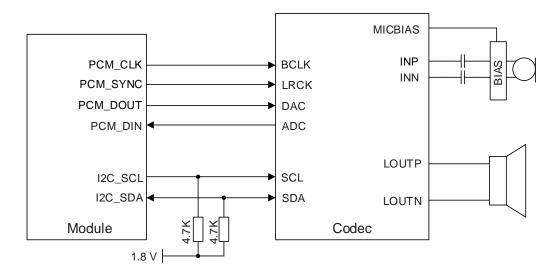


Figure 23: Reference Circuit of PCM and I2C Application with Audio Codec

NOTE

- 1. It is recommended to reserve an RC (R = 0 Ω , C = 33 pF) circuit on the PCM lines, especially for PCM_CLK.
- 2. The module can only be used as a master device in applications related to PCM and I2C interfaces.

4.6. Analog Audio Interfaces

The module provides one analog input channel and one analog output channel.

Table 18: Pin Definition of Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment
MICBIAS	120	РО	Bias voltage output for microphone	
MIC_P	126	Al	Microphone analog input (+)	If unused, keep them open.
MIC_N	119	Al	Microphone analog input (-)	_
SPK_P	121	AO	Analog audio differential output (+)	The interface can drive 32 Ω earpiece with power rate at
SPK_N	122	АО	Analog audio differential output (-)	37 mW @ THD = 1 %. It can also be used to drive

external power amplifier
devices if the output power
rate cannot meet the
demand.
If unused, keep them open.

- Al channels are differential input channels, which can be applied for input of microphone (usually an electret microphone is used).
- AO channels are differential output channels, which can be applied for output of earpiece.

4.6.1. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10 pF and 33 pF) for filtering out RF interference, thus reducing noise. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you need to discuss with your capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required. The filter capacitor on the PCB should be placed as close as possible to the audio device or audio interface, and the wiring should be as short as possible. The filter capacitor should be passed before reaching other connection points.

To decrease signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces and audio traces cannot be parallel, and they should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

4.6.2. Microphone Interface Design

The microphone channel reference circuit is shown in the following figure.

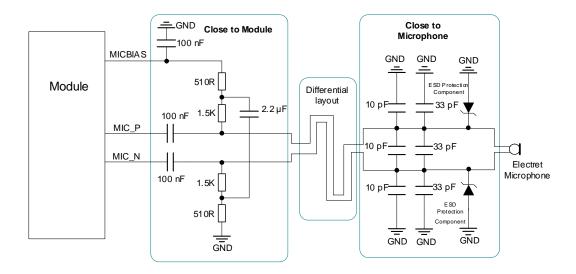


Figure 24: Reference Circuit for Microphone Interface

NOTE

MIC channel is sensitive to ESD, so it is not recommended to remove the ESD protection components used for protecting the MIC.

4.6.3. Earpiece and Loudspeaker Interface Design

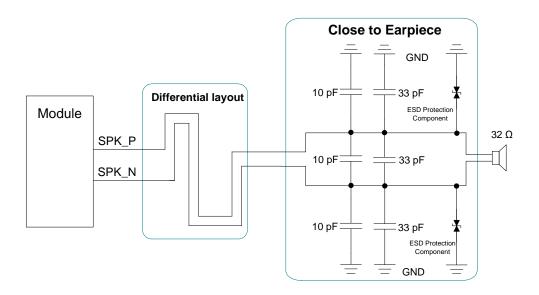


Figure 25: Reference Circuit for Earpiece Interface

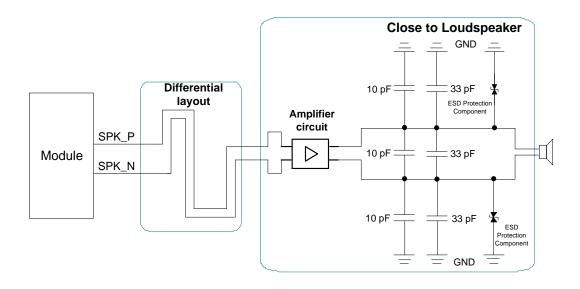


Figure 26: Reference Circuit of External Audio Amplifier Output

For differential input and output audio power amplifiers, please visit http://www.ti.com to obtain the required devices. There are also many audio power amplifiers with the same performance to choose from on the market.

4.7. ADC Interfaces

The module provides two analog-to-digital converter (ADC) interfaces. You can use the *ql_adc_read()* to read the voltage value of the ADC. See *document [6]* for details about the API.

To improve the accuracy of ADC, surround the trace of ADC with ground.

Table 19: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ADC0	24	Al	Conoral purpose ADC interface	If unused keep them open
ADC1	2	AI	General-purpose ADC interface	If unused, keep them open.

Table 20: Characteristics of ADC Interface

Name	Min.	Тур.	Max.	Unit
ADC0 Voltage Range	0	-	VBAT_BB	V
ADC1 Voltage Range	0	-	VBAT_BB	V
ADC Resolution	-	12	-	bits

NOTE

- 1. The input voltage of ADC should not exceed its voltage range.
- 2. It is prohibited to directly supply any voltage to ADC interface when the module is not powered by the VBAT.
- 3. If the collected voltage is greater than VBAT_BB, it is recommended to use a resistor divider circuit input for the ADC pin. When designing it, reserve a 1 nF capacitor at both ends of the grounding divider resistor. The capacitor is not mounted by default.

4.8. Camera Interface

The module provides one camera interface, supports up to 0.3 MP and supports single data line or dual data line transmission of SPI.

Table 21: Pin Definition of Camera Interface

Pin Name	Pin No.	I/O	Description	Comment	
CAM_MCLK	95	DO	Master clock of camera	1.8 V power domain. If unused, keep it open.	
CAM_I2C_SCL	103	OD	I2C clock of camera	Pull each of them up to 1.8 V power domain with external	
CAM_I2C_SDA	114	OD	I2C data of camera	resistors. If unused, keep them open.	
CAM_SPI_CLK	78	DI	SPI clock of camera		
CAM_SPI_DATA0	97	DI	SPI data 0 of camera	1.8 V power domain.	
CAM_SPI_DATA1	98	DI	SPI data 1 of camera	If unused, keep them open.	
CAM_PWDN	115	DO	Power down of camera	_	

CAM_VDD	94	РО	Analog power supply of camera	Power supply of camera.
CAM_VDDIO	93	РО	Digital power supply of camera	If unused, keep them open.

4.9. SPI

The module provides one SPI which supports master and slave modes with a maximum clock frequency up to 26 MHz.

Table 22: Pin Definition of SPI

Pin Name	Pin No.	I/O	Description	Comment	
SPI_CS	25	DIO	SPI chip select	1.8 V power domain. If unused, keep them open.	
SPI_CLK	26	DIO	SPI clock	When the module is used as	
SPI_DOUT	27	DO	SPI data output	master device, SPI_CS and SPI_CLK pins are output	
SPI_DIN	28	DI	SPI data input	signals; when the module is used as slave device, SPI_CS and SPI_CLK pins are input signals.	

The following figure shows reference circuits of SPI.

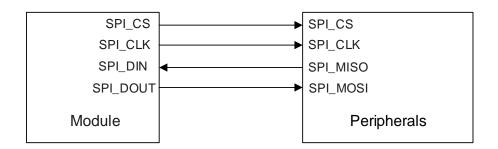


Figure 27: Reference Circuit of SPI (Module as Master Device)

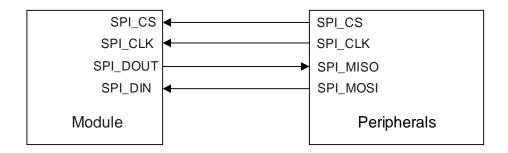


Figure 28: Reference Circuit of SPI (Module as Slave Device)

4.10. Matrix Keypad Interfaces

The module supports 3×3 matrix keypad interface, which can be multiplexed by STATUS, SLEEP_IND, NET_STATUS and GPIO interfaces.

Table 23: Pin Definition of Matrix Keypad Interfaces

Pin Name	Pin No.	Multiplexing Function	I/O	Description	Comment
SLEEP_IND	1	KP_MKIN[4]	DI	Matrix keypad input 4	
GPIO1	16	KP_MKOUT[2]	DO	Matrix keypad output 2	
STATUS	20	KP_MKOUT[1]	DO	Matrix keypad output 1	1.8 V power domain.
NET_STATUS	21	KP_MKIN[3]	DI	Matrix keypad input 3	If unused, keep them open.
GPIO5	105	KP_MKIN[2]	DI	Matrix keypad input 2	-
GPIO8	116	KP_MKOUT[3]	DO	Matrix keypad output 3	-

NOTE

- 1. KP_MKIN can be used with KP_MKOUT flexibly, such as KP_MKIN[1] used with KP_MKOUT[2].
- 2. For more information, see document [5].

4.11. Indication Signal

Relative interfaces' pin descriptions are here as follows:

Table 24: Pin Definition of Indication Signal

Pin Name	Pin No.	I/O	Description	Comment
NET_STATUS	21	DO	Indicate the module's network activity status	1.8 V power domain.
STATUS	20	DO	Indicate the module's operation status	If unused, keep them open.

4.11.1. Network Status Indication

The network indication pins can be used to drive network status indication LEDs. The module provides one network indication pin: NET_STATUS. The following tables describe pin definition and logic level changes in different network status.

Table 25: Working State of the Network Connection Status/Activity Indication

Pin Name	Status	Description
NET_STATUS	Flicker slowly (200 ms High/1800 ms Low)	Network searching
	Flicker slowly (1800 ms High/200 ms Low)	Idle
	Flicker quickly (125 ms High/125 ms Low)	Data transmission is ongoing
	Always High	Voice calling

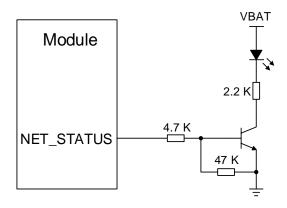


Figure 29: Reference Circuit of the Network Status Indication

4.11.2. STATUS

The STATUS pin indicates the module's operation status. It will output high level when module is turned on successfully.

A reference circuit is shown as below.



Figure 30: Reference Circuits of STATUS

4.12. **GPIOs**

The module provides eight general GPIOs, which can be configured as general GPIO or other functions. For details, see *document* [5].

Table 26: Pin Definition of GPIOs

Pin Name	Pin No.	I/O	Description	Comment
GPIO1	16	DIO	General-purpose input/output	
GPIO2	64	DIO	General-purpose input/output	_
GPIO3	92	DIO	General-purpose input/output	1.8 V power domain.
GPIO4	104	DIO	General-purpose input/output	If unused, keep them open.
GPIO5	105	DIO	General-purpose input/output	
GPIO6	106	DIO	General-purpose input/output	_
GF100	100	סום	General-purpose input/output	

GPIO7	107	DIO	General-purpose input/output
GPIO8	116	DIO	General-purpose input/output

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. Cellular Network

5.1.1. Antenna Interface & Frequency Bands

Table 27: Pin Definition of Cellular Network Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	60	AIO	Main antenna interface	50 Ω impedance.

NOTE

Only passive antennas are supported.

Table 28: Operating Frequency of EG912N-EN

Operating Frequency	Transmit (MHz)	Receive (MHz)
EGSM900	880–915	925–960
DCS1800	1710–1785	1805–1880
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690

LTE-FDD B8	880–915	925–960
LTE-FDD B20	832–862	791–821
LTE-FDD B28	703–748	758–803
LTE-FDD B31	452.5–457.5	462.5–467.5
LTE-FDD B72	451–456	461–466

5.1.2. Transmitting Power

Table 29: RF Transmitting Power

Frequency Bands	Max.	Min.
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B5/B7/B8/B20/B28/B31/B72	23 dBm ±2 dB	< -39 dBm

NOTE

In GPRS 4 slots Tx mode, the maximum output power is reduced by 4.0 dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

5.1.3. Receiver Sensitivity

The following table shows conducted RF receiver sensitivity of the module.

Table 30: Conducted RF Receiver Sensitivity of EG912N-EN

Frequency	Rec	3GPP Requirement		
Frequency	Primary	Diversity	SIMO	(SIMO)
EGSM900	-108 dBm	-	-	-102 dBm
DCS1800	-107 dBm	-	-	-102 dBm
LTE-FDD B1 (10 MHz)	-98 dBm	-	-	-96.3 dBm
LTE-FDD B3 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B5 (10 MHz)	-98 dBm	-	-	-94.3 dBm
LTE-FDD B7 (10 MHz)	-97 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B20 (10 MHz)	-96.5 dBm	-	-	-93.3 dBm
LTE-FDD B28 (10 MHz)	-97.5 dBm	-	-	-94.8 dBm
LTE-FDD B31 (5 MHz)	-97.5 dBm	-	-	-92.8 dBm
LTE-FDD B72 (5 MHz)	-96.5 dBm	-	-	-92.8 dBm

5.1.4. Reference Design

The module provides one RF antenna interfaces for antenna connection.

It is recommended to reserve a π -type matching circuit for better RF performance, and the π -type matching components (C1, R1, and C2) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

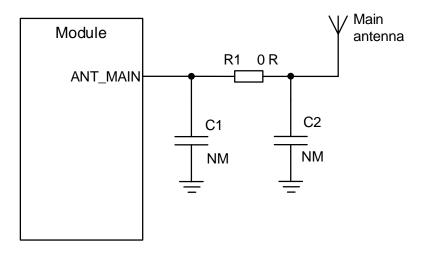


Figure 31: Reference Circuit for RF Antenna Interface

5.2. Reference Design of RF Routing

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

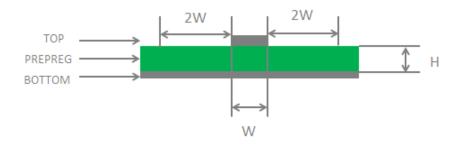


Figure 32: Microstrip Design on a 2-layer PCB

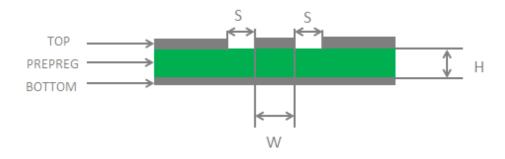


Figure 33: Coplanar Waveguide Design on a 2-layer PCB

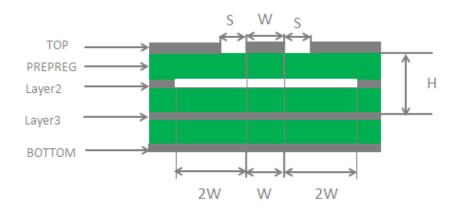


Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

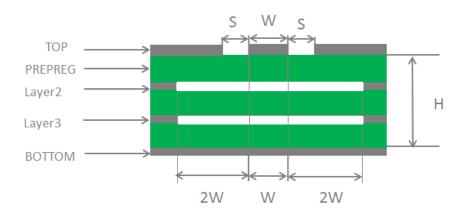


Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 O
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [7].

5.3. Requirements for Antenna Design

Table 31: Requirements for Antenna Design

Antenna Type	Requirements
GSM/LTE	 VSWR: ≤ 2 Efficiency: > 30 % Gain: 1 dBi Max input power: 50 W Input impedance: 50 Ω Polarization: Vertical Cable insertion loss: < 1 dB: LB (< 1 GHz)
	< 1.5 dB: MB (1–2.3 GHz) < 2 dB: HB (> 2.3 GHz)

5.4. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by Hirose.

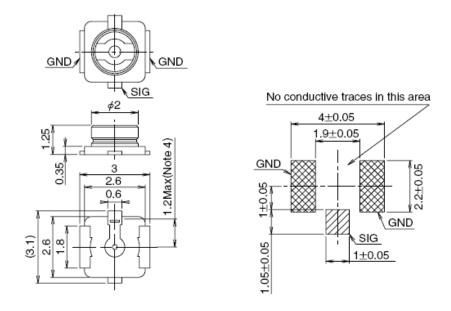


Figure 36: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT connector.

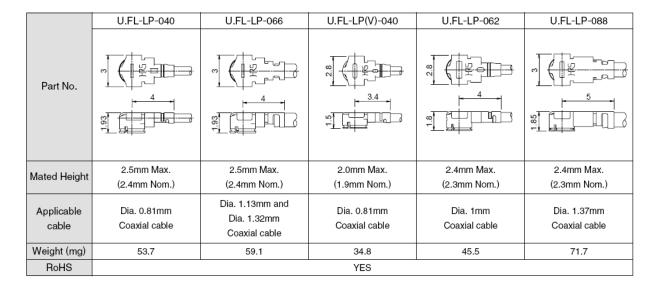


Figure 37: Specifications of Mated Plugs

The following figure describes the space factor of mated connectors.

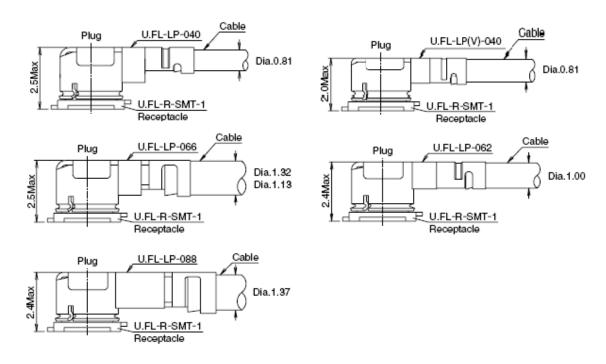


Figure 38: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit http://www.hirose.com.

6 Electrical Characteristics & Reliability

6.1. Absolute Maximum Ratings

Table 32: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	6.0	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	-	0.8	A
Peak Current of VBAT_RF	-	2.2	A
Voltage on Digital Pins	-0.3	2.3	V

6.2. Power Supply Ratings

Table 33: Power Supply Ratings

Parameter	Description Conditions		Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must stay between the minimum and maximum values	3.4	3.8	4.3	V
	Voltage drop during transmitting burst	AT maximum power control level	-	-	400	mV
I _{VBAT}	Peak supply current	AT maximum power control level	-	2.0	2.5	А
USB_VBUS USB connection detection			3.0	5.0	5.25	V

6.3. Power Consumption

Table 34: Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	29	μΑ
	Minimum Functionality Mode (USB disconnected)	0.69	mA
	EGSM900 @ DRX = 2 (USB disconnected)	2.00	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.37	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.50	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.15	mA
	DCS1800 @ DRX = 2 (USB disconnected)	1.76	mA
Sleep state	DCS1800 @ DRX = 5 (USB disconnected)	1.26	mA
oloop state	DCS1800 @ DRX = 5 (USB suspend)	1.38	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.09	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.71	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.26	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.43	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.04	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.94	mA
	EGSM900 @ DRX = 5 (USB disconnected)	20.10	mA
I.B. arata	EGSM900 @ DRX = 5 (USB connected)	29.28	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	20.04	mA
	LTE-FDD @ PF = 64 (USB connected)	29.18	mA
	EGSM900 4DL/1UL @ 32.43 dBm	243	mA
GPRS data transmission	EGSM900 3DL/2UL @ 32.37 dBm	435	mA
	EGSM900 2DL/3UL @ 30.83 dBm	525	mA

	EGSM900 1DL/4UL @ 28.99 dBm	578	mA
	DCS1800 4DL/1UL @ 30.22 dBm	154	mA
	DCS1800 3DL/2UL @ 30.17 dBm	264	mA
	DCS1800 2DL/3UL @ 28.62 dBm	318	mA
	DCS1800 1DL/4UL @ 26.53 dBm	336	mA
	EGSM900 4DL/1UL @ 26.92 dBm	150	mA
	EGSM900 3DL/2UL @ 26.92 dBm	256	mA
	EGSM900 2DL/3UL @ 25.18 dBm	313	mA
EDOE LA AMARIA	EGSM900 1DL/4UL @ 23.30 dBm	353	mA
EDGE data transmission	DCS1800 4DL/1UL @ 26.31 dBm	120	mA
	DCS1800 3DL/2UL @ 26.35 dBm	199	mA
	DCS1800 2DL/3UL @ 24.54dBm	251	mA
	DCS1800 1DL/4UL @ 22.69 dBm	295	mA
	LTE-FDD B1	518.77	mA
	LTE-FDD B3	528.30	mA
	LTE-FDD B5	472.56	mA
	LTE-FDD B7	459.75	mA
LTE data transmission	LTE-FDD B8	428.98	mA
	LTE-FDD B20	515.66	mA
	LTE-FDD B28	405.87	mA
	LTE-FDD B31	562.22	mA
	LTE-FDD B72	592.15	mA
	EGSM900 PCL = 5 @ 32.58 dBm	255	mA
CCM vaice as !!	EGSM900 PCL = 12 @ 19.66 dBm	97	mA
GSM voice call	EGSM900 PCL = 19 @ 5.41 dBm	60	mA
	DCS1800 PCL = 0 @ 30.26 dBm	162	mA

DCS1800 PCL = 7 @ 17.24 dBm	76	mA
DCS1800 PCL = 15 @ 1.24 dBm	56	mA

6.4. Digital I/O Characteristic

Table 35: 1.8 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
V _{IH}	Input high voltage	0.7 × VDDIO	VDDIO + 0.2	V
V _{IL}	Input low voltage	-0.3	0.3 × VDDIO	V
V _{OH}	Output high voltage	VDDIO – 0.2	-	V
VoL	Output low voltage	-	0.2	V

Table 36: (U)SIM Low-voltage I/O Requirements

V _{IH} Input high voltage 0.7 × USIM_VDD USIM_VDD V V _{IL} Input low voltage 0 0.2 × USIM_VDD V V _{OH} Output high voltage 0.7 × USIM_VDD USIM_VDD V V _{OL} Output low voltage 0 0.15 × USIM_VDD V	Parameter	Description	Min.	Max.	Unit
V _{OH} Output high voltage 0.7 × USIM_VDD USIM_VDD V	V _{IH}	Input high voltage	0.7 × USIM_VDD	USIM_VDD	V
	V_{IL}	Input low voltage	0	0.2 x USIM_VDD	V
V _{OL} Output low voltage 0 0.15 × USIM_VDD V	V _{OH}	Output high voltage	0.7 × USIM_VDD	USIM_VDD	V
	V _{OL}	Output low voltage	0	0.15 × USIM_VDD	V

Table 37: (U)SIM High-voltage I/O Requirements

Parameter	Description	Min.	Max.	Unit
V _{IH}	Input high voltage	0.7 × USIM_VDD	USIM_VDD	V
V_{IL}	Input low voltage	0	0.15 × USIM_VDD	V
V _{OH}	Output high voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{OL}	Output low voltage	0	0.15 × USIM_VDD	V

6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

ESD characteristics of the module's pins are as follows:

Table 38: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
All Antenna Interfaces	±4	±8	kV
Other Interfaces	±0.5	±1	kV

6.6. Operating and Storage Temperatures

Table 39: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ³	-35	+25	+75	°C
Extended Temperature Range ⁴	-40	-	+85	°C
Storage temperature range	-40	-	+95	°C

_

³ Within operating temperature range, the module meets 3GPP specifications.

⁴ Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, emergency call, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

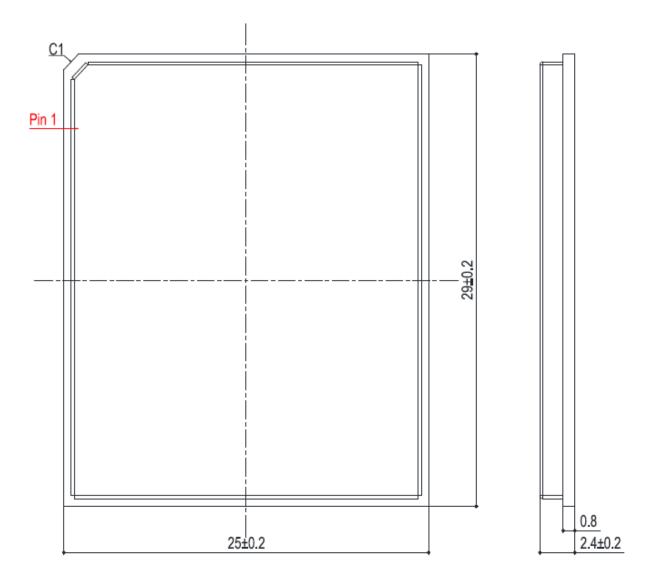


Figure 39: Module Top and Side Dimensions (Unit: mm)

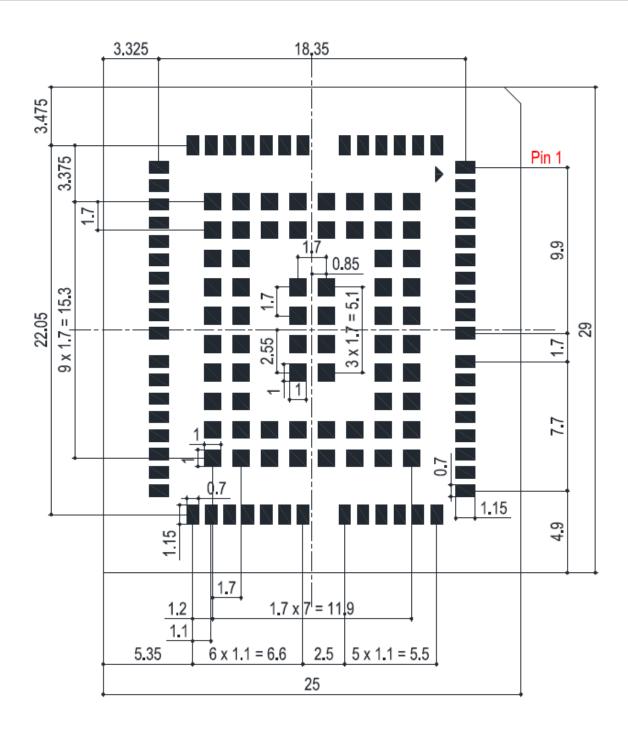


Figure 40: Module Bottom Dimensions (Bottom View, Unit: mm)

NOTE

The package warpage level of the module conforms to the JEITA ED-7306 standard.

7.2. Recommended Footprint

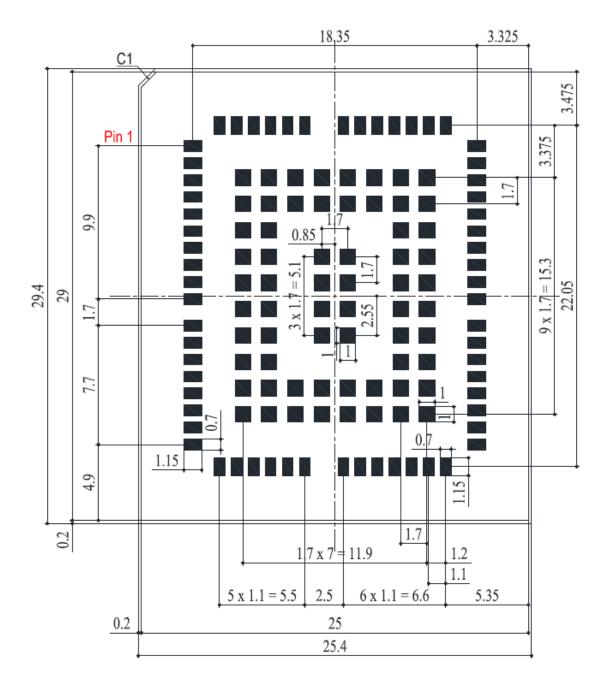


Figure 41: Recommended Footprint (Top View)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

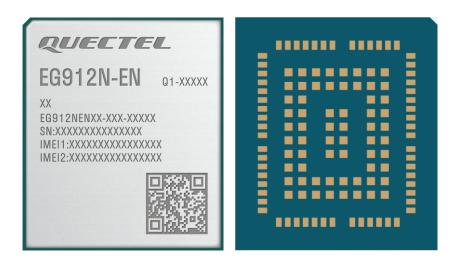


Figure 42: Top & Bottom Views of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ⁵ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

⁵ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not remove the packages of tremendous modules if they are not ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [8]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

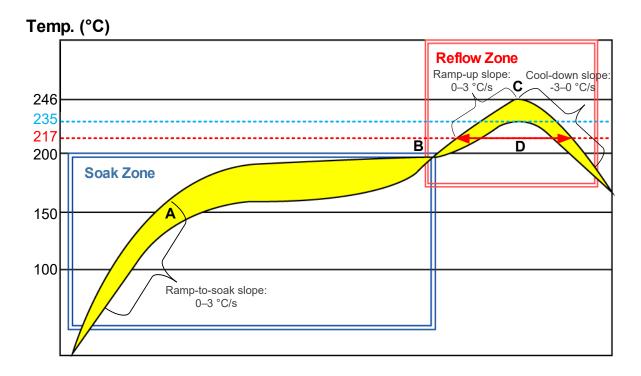


Figure 43: Recommended Reflow Soldering Thermal Profile

Table 40: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Max slope	0–3 °C/s
Reflow time (D: over 217 °C)	40–70 s
Max temperature	235–246 °C
Cooling down slope	-3-0 °C/s
Reflow Cycle	
Max reflow cycle	1

NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document* [8].

8.3. Packaging Specifications

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts carrier tape packaging and details are as follow:

8.3.1. Carrier Tape

Dimension details are as follow:

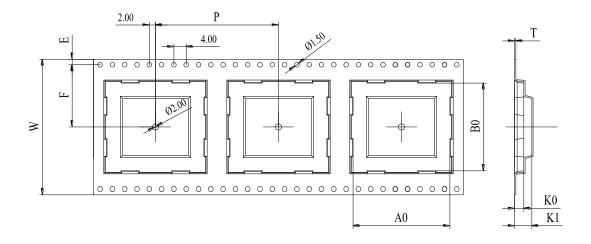


Figure 44: Carrier Tape Dimension Drawing

Table 41: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	A0	В0	K0	K1	F	Е
44	32	0.35	25.5	29.5	3.2	5.8	20.2	1.75

8.3.2. Plastic Reel

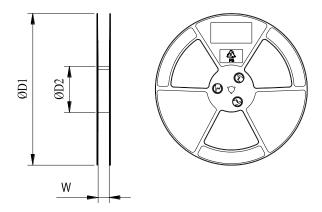
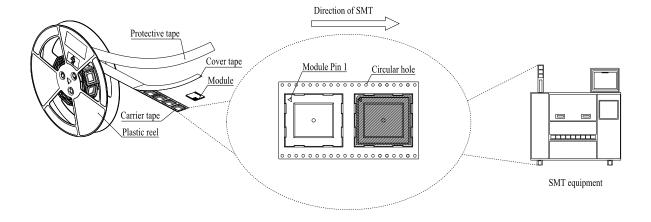



Figure 45: Plastic Reel Dimension Drawing

Table 42: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5

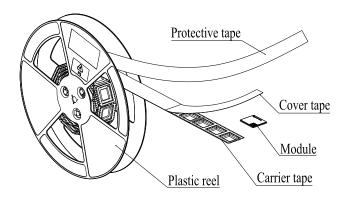
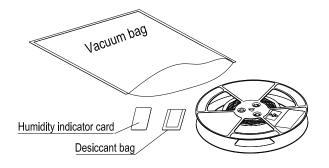
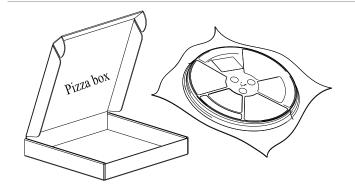

8.3.3. Mounting Direction

Figure 46: Mounting Direction




8.3.4. Packaging Process

Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. 1 plastic reel can load 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, vacuumize it.

Place the vacuum-packed plastic reel into the pizza box.

Put 4 packaged pizza boxes into 1 carton box and seal it. 1 carton box can pack 1000 modules.

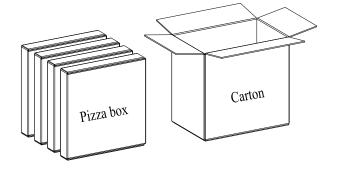


Figure 47: Packaging Process

9 Appendix References

Table 43: Related Documents

Document Name		
[1] Quectel_LTE_OPEN_EVB_User_Guide		
[2] Quectel_EG91xN_Series_QuecOpen_Device_Management_API_Reference_Manual		
[3] Quectel_EG91xN_Series_QuecOpen_Low_Power_Consumption_API_Reference_Manual		
[4] Quectel_EG91xN_Series_QuecOpen_Booting&Shutdown_User_Guide		
[5] Quectel_EG912N_EN_QuecOpen_GPIO _Configuration		
[6] Quectel_EC200S&EG91xN_Series_QuecOpen_ADC_Development_Guide		
[7] Quectel_RF_Layout_Application_Note		
[8] Quectel_Module_SMT_Application_Note		

Table 44: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
AMR-WB	Adaptive Multi-Rate Wideband
AP	Application Processor
bps	Bits Per Second
CA	Carrier Aggregation
СНАР	Challenge Handshake Authentication Protocol
CMUX	Connection MUX

CS	Coding Scheme
CTS	Clear To Send
DCE	Data Communications Equipment
DCS	Data Coding Scheme
DFOTA	Delta Firmware Upgrade Over the Air
DL	Downlink
DRX	Discontinuous Reception
DTE	Data Terminal Equipment
DTR	Data Terminal Ready
EGSM	Enhanced GSM
EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
EVB	Evaluation Board
FDD	Frequency Division Duplex
FILE	File Protocol
FR	Full Rate
FTP	File Transfer Protocol
FTPS	FTP-SSL: FTP over SSL / FTP Secure
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
НВ	High Band
HR	Half Rate

HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
IC	Integrated Circuit
I2C	Inter-Integrated Circuit
I/O	Input/Output
LB	Low Band
LDO	Low-dropout Regulator
LED	Light Emitting Diode
LGA	Land Grid Array
LSB	Least Significant Bit
LTE	Long Term Evolution
MB	Middle Band
MCU	Microcontroller Unit
MHB	Middle/High Band
MLCC	Multi-layer Ceramic Capacitor
MIMO	Multiple Input Multiple Output
MMS	Multimedia Messaging Service
MO	Mobile Originated
MQTT	Message Queuing Telemetry Transport
MS	Mobile Station
MSB	Most Significant Bit
MT	Mobile Terminated
NITZ	Network Identity and Time Zone / Network Informed Time Zone
NMEA	NMEA (National Marine Electronics Association) 0183 Interface Standard
NTP	Network Time Protocol

PA	Power Amplifier
PAP	Password Authentication Protocol
PAM	Power Amplifier Module
PC	Personal Computer
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDA	Personal Digital Assistant
PDU	Protocol Data Unit
PING	Packet Internet Groper
PMIC	Power Management Integrated Circuit
PPP	Point-to-Point Protocol
PRX	Primary Receive
RAM	Random Access Memory
RI	Ring Indicator
RF	Radio Frequency
Rx	Receive
SIMO	Single Input Multiple Output
SMD	Surface Mount Device
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
STB	Set Top Box
TCP	Transmission Control Protocol
TDD	Time Division Duplexing

THD	Total Harmonic Distortion
Тх	Transmit
TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USB	Universal Serial Bus
(U)SIM	Universal Subscriber Identity Module
VBAT	Voltage at Battery (Pin)
Vmax	Maximum Voltage
Vnom	Nominal Voltage
Vmin	Minimum Voltage
V _{IH}	High-level Input Voltage
V _{IL}	Low-level Input Voltage
Voн	High-level Output Voltage
V _{OL}	Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access