

EC200A Series QuecOpenHardware Design

LTE Standard Module Series

Version: 1.1

Date: 2023-11-10

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergent help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
			2000. p. 101.
-	2022-06-20	Shiye ZHU/ Kerwin CHENG	Creation of the document
1.0	2022-07-25	Shiye ZHU/ Kerwin CHENG	First official release
1.1	2023-11-10	Shiye ZHU/ John QIN/ Charley JIANG	 Added the applicable variant EC200A-EL and related information. Deleted NTP, FTPS and MQTT internet protocol (Table 4). Updated the information about functional diagram (Chapter 2.3). Updated pins 144 & 143 from RESERVED to GRFC1 and GRFC2 respectively (Figure 2 & Table 6). Added Note 3 about antenna tuning switch (Chapter 2.4). Updated the DC characteristics (Table 6). Added footnote about VBAT_BB, and updated the VBAT_RF current requirement (Tables 6 & 8 & 38). Updated the power domain of SD card interface from 1.8/2.8 V to 1.8/2.85 V (Tables 6 & 19). Updated the comment of SPI (Tables 6 & 23). Added current requirement of variant that does not support GSM frequency band (Chapter 3.4.2). Updated the minimum time of pulling down PWRKEY pin from 500 ms to 650 ms (Chapter 3.5 & 4.2). Added the cable routing requirements for

- SD_SDIO_CLK (Chapter 4.7).
- 13. Added NOTE 4 of the RGMII/RMII interface (Chapter 4.11).
- 14. Updated the Rx sensitivity data of each variant in the LTE frequency band (Table 33 & 34 & 35).
- 15. Updated the power consumption (Chapter 6.3).
- 16. Updated the digital I/O characteristic (Chapter 6.4).
- 17. Updated the recommended thickness of stencil for the module, the ramp-to-soak slope of soak zone, ramp-up and cool-down slope of reflow zone, and added a related note (Chapter 8.2).
- 18. Added mounting direction of the module (Chapter 8.3.3).

Contents

Sa	tety Informa	ition	3
Ab	out the Doc	ument	4
Со	ntents		6
Та	ble Index		8
Fig	gure Index		10
1	Introduction	on	12
		ecial Marks	
2	Product O	verview	13
	2.1. Fre	equency Bands and Functions	13
	2.2. Key	y Features	14
	2.3. Fur	nctional Diagram	17
	2.4. Pin	Assignment	18
	2.5. Pin	Description	19
	2.6. EV	B Kit	28
3	Operating	Characteristics	29
	3.1. Op	erating Modes	29
	3.2. Sle	ep Mode	30
	3.2.1.	USB Application with USB Remote Wakeup Function	30
	3.2.2.	USB Application without USB Remote Wakeup Function	31
	3.2.3.	USB Application without USB Suspend Function	31
	3.3. Air	plane Mode	32
	3.4. Pov	wer Supply	33
	3.4.1.	Power Supply Pins	33
	3.4.2.	Reference Design for Power Supply	34
	3.4.3.	Requirements for Voltage Stability	34
	3.5. Tur	rn On	36
	3.5.1.	Turn on the Module with PWRKEY	36
	3.6. Tur	rn Off	38
	3.6.1.	Turn off the Module with PWRKEY	38
	3.6.2.	Turn off the Module with AT Command	38
	3.7. Res	set	39
4	Applicatio	n Interfaces	41
	4.1. US	B Interface	41
	4.2. US	B_BOOT Interface	43
	4.3. (U)	SIM Interface	44
	4.4. PC	M and I2C Interfaces	46
	4.5. Ana	alog Audio Interfaces	48
	4.5.1.	Notes on Analog Audio Interface Design	49
	4.5.2.	Microphone Interface Circuit	49

	4.5.3. Earp	iece Interface Circuit	50
	4.6. UART Inte	erface	51
	4.7. SD card In	nterface	53
	4.8. WLAN_SD	DIO Interface	54
	4.9. ADC Interf	face	55
	4.10. SPI		56
	4.11. RGMII/RM	III Interface	57
	4.12. Indication	Signal	60
	4.12.1.	Network Status Indication	61
	4.12.2.	STATUS	61
5	•	s	
		etwork	
		nna Interface & Frequency Bands	
		ower	
	5.1.3. Rx S	Sensitivity	67
		erence Design	
		Design of RF Routing	
	-	ents for Antenna Design	
	5.4. RF Conne	ctor Recommendation	73
6		teristics & Reliability	
		Maximum Ratings	
		oply Ratings	
		nsumption	
	ŭ	Characteristics	
		ection	
	6.6. Operating	and Storage Temperatures	92
7		mation	
		al Dimensions	
		nded Footprint	
	7.3. Top and B	ottom Views	96
8	•	cturing & Packaging	
	•	onditions	
		uring and Soldering	
		g Specifications	
		ier Tape	
		tic Reel	
		nting Direction	
	8.3.4. Pack	kaging Process	102
9	Appendix Refere	nces	103

Table Index

Table 1: Special Marks	12
Table 2: Brief Introduction of the Module	13
Table 3: Wireless Network Mode	13
Table 4: Key Features	14
Table 5: I/O Parameters Definition	19
Table 6: Pin Description	19
Table 7: Overview of Operating Modes	29
Table 8: Pin Definition of Power Supply	33
Table 9: Pin Definition of PWRKEY	36
Table 10: Pin Definition of RESET_N	39
Table 11: Pin Definition of USB Interface	41
Table 12: Pin Definition of USB_BOOT Interface	43
Table 13: Pin Definition of (U)SIM Interface	45
Table 14: Pin Definition of PCM Interface	47
Table 15: Pin Definition of I2C Interface	48
Table 16: Pin Definition of Analog Audio Interfaces	49
Table 17: Pin Definition of Main UART	51
Table 18: Pin Definition of Debug UART	51
Table 19: Pin Definition of SD Card Interface	53
Table 20: Pin Definition of WLAN Interface	54
Table 21: Pin Definition of ADC Interface	55
Table 22: Characteristics of ADC Interface	56
Table 23: Pin Definition of SPI	56
Table 24: Pin Definition of RGMII/RMII Interface	58
Table 25: Pin Definition of Indication Signal	60
Table 26: Working Status of Network Connection Status/Activity Indication	61
Table 27: Pin Definition of Cellular Network Interfaces	63
Table 28: Operating Frequency of EC200A-CN	63
Table 29: Operating Frequency of EC200A-AU	64
Table 30: Operating Frequency of EC200A-EU	65
Table 31: Operating Frequency of EC200A-EL	66
Table 32: Tx Power	
Table 33: Conducted RF Receiving Sensitivity of EC200A-CN (Unit: dBm)	67
Table 34: Conducted RF Receiving Sensitivity of EC200A-AU (Unit: dBm)	
Table 35: Conducted RF Receiving Sensitivity of EC200A-EU (Unit: dBm)	
Table 36: Conducted RF Receiving Sensitivity of EC200A-EL (Unit: dBm)	70
Table 37: Requirements for Antenna Design	73
Table 38: Absolute Maximum Ratings	
Table 39: Module's Power Supply Ratings	
Table 40: Current Consumption of EC200A-CN	
Table 41: Current Consumption of EC200A-AU	80

Table 42: Current Consumption of EC200A-EU	84
Table 43: Current Consumption of EC200A-EL	88
Table 44: VDD_EXT I/O Requirements	90
Table 45: (U)SIM Low-voltage I/O Requirements	90
Table 46: (U)SIM High-voltage I/O Requirements	90
Table 47: SDIO Low-voltage I/O Requirements	91
Table 48: SDIO High-voltage I/O Requirements	91
Table 49: Electrostatics Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)	91
Table 50: Operating and Storage Temperatures	92
Table 51: Recommended Thermal Profile Parameters	99
Table 52: Carrier Tape Dimension Table (Unit: mm)	100
Table 53: Plastic Reel Dimension Table (Unit: mm)	101
Table 54: Related Documents	103
Table 55: Terms and Abbreviations	103

Figure Index

Figure 1: Functional Diagram	17
Figure 2: Pin Assignment (Top View)	18
Figure 3: DRX Run Time and Current Consumption in Sleep Mode	30
Figure 4: Sleep Mode Application with USB Remote Wakeup	30
Figure 5: Sleep Mode Application without USB Remote Wakeup	31
Figure 6: Sleep Mode Application without Suspend Function	32
Figure 7: Reference Design of Power Supply	34
Figure 8: Power Supply Limits during Burst Transmission	35
Figure 9: Star Structure of the Power Supply	35
Figure 10: Reference Circuit of Turning on the Module Using Driving Circuit	36
Figure 11: Reference Circuit of Turning on the Module with Button	37
Figure 12: Power-up Timing	37
Figure 13: Timing of Turning off Module	38
Figure 14: Reference Circuit of RESET_N with Driving Circuit	39
Figure 15: Reference Circuit of RESET_N with Button	40
Figure 16: Timing of Resetting Module	
Figure 17: Reference Circuit of USB Interface	42
Figure 18: Reference Circuit of USB_BOOT Interface	43
Figure 19: Timing Sequence for Entering Emergency Download Mode	44
Figure 20: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector	45
Figure 21: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector	46
Figure 22: Timing Sequence for Short Frame Mode	47
Figure 23: PCM and I2C Interface Circuit Reference Design	48
Figure 24: Microphone Interface Reference Circuit	50
Figure 25: Earpiece Interface Reference Circuit	50
Figure 26: Reference Circuit with Translator Chip	
Figure 27: Reference Circuit with Transistor Circuit	52
Figure 28: Reference Circuit of SD Card Interface	53
Figure 29: SPI Circuit Reference Design (Module as Master Device)	
Figure 30: SPI Circuit Reference Design (Module as Slave* Device)	57
Figure 31: Reference Circuit of RMII to PHY Interface	59
Figure 32: Reference Circuit of RGMII to PHY Interface	59
Figure 33: Reference Circuit of the Network Status Indication	
Figure 34: Reference Circuits of STATUS	62
Figure 35: Reference Circuit for RF Antenna Interfaces	71
Figure 36: Microstrip Design on a 2-layer PCB	
Figure 37: Coplanar Waveguide Design on a 2-layer PCB	72
Figure 38: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	72
Figure 39: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	72
Figure 40: Dimensions o fthe Receptacle (Unit: mm)	74
Figure 41: Mechanicals of Mated Plugs	74

Figure 42: S	Space Factor of Mated Connector (Unit: mm)	. 75
Figure 43: N	Module Top and Side Dimensions (Unit: mm)	. 93
Figure 44: N	Module Bottom Dimensions View (Unit: mm)	. 94
Figure 45: R	Recommended Footprint (Perspective View)	. 95
Figure 46: To	op and Bottom Views of the Module	. 96
Figure 47: R	Recommended Reflow Soldering Thermal Profile	. 98
Figure 48: C	Carrier Tape Dimension Drawing (Unit: mm)	100
Figure 49: P	Plastic Reel Dimension Drawing	101
Figure 50: M	Mounting Direction	101
Figure 51: P	Packaging Process	102

1 Introduction

QuecOpen[®] is a solution where the module acts as the main processor. Constant transition and evolution of both the communication technology and the market highlight its merits. It can help you to:

- Realize embedded applications' quick development and shorten product R&D cycle
- Simplify circuit and hardware structure design to reduce engineering costs
- Miniaturize products
- Reduce product power consumption
- Apply OTA technology
- Enhance product competitiveness and price-performance ratio

This document defines the EC200A series QuecOpen® module and describes its air interfaces and hardware interfaces which are connected with your applications.

It can help you quickly understand interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with application notes and user guides, customers can use this module to design and to set up mobile applications easily.

1.1. Special Marks

Table 1: Special Marks

Mark	Definition	
*	Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, argument, and so on, it indicates that the function, feature, interface, pin, AT command, argument, and so on, are under development and currently not supported; and the asterisk (*) after a model indicates that the sample of such model is currently unavailable.	
[]	Brackets ([]) used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SD_SDIO_DATA[0:3] refers to all four SD_SDIO_DATA pins, SD_SDIO_DATA0, SD_SDIO_DATA1, SD_SDIO_DATA2, and SD_SDIO_DATA3.	

2 Product Overview

The product is a series of LTE/WCDMA/GSM wireless communication module with receive diversity, which provides data connectivity on LTE-FDD, LTE-TDD, HSDPA, HSPA+, WCDMA, EDGE and GPRS network data connection. It also provides voice functionality for your specific applications. The module contains 4 variants. You can choose a dedicated type based on the region or operator. The following table shows the frequency bands of the module.

Table 2: Brief Introduction of the Module

Categories	
Packaging and pins number	LCC 80-pin; LGA 64-pin
Dimensions	(29.0 ±0.15) mm × (32.0 ±0.15) mm × (2.4 ±0.2) mm
Weight	4.4 g
Wireless network functions	LTE/WCDMA/GSM
Variants	EC200A-CN, EC200A-AU, EC200A-EU, EC200A-EL

2.1. Frequency Bands and Functions

Table 3: Wireless Network Mode

Mode	EC200A-CN	EC200A-AU	EC200A-EU	EC200A-EL
LTE-FDD	B1/B3/B5/B8	B1/B2/B3/B4/B5/ B7/B8/B28/B66	B1/B3/B5/B7/ B8/B20/B28	B1/B3/B5/B7/ B8/B20/B28
LTE-TDD	B34/B38/B39/ B40/B41	B40	B38/B40/B41	B38/B40/B41
WCDMA	B1/B5/B8	B1/B2/B4/B5/B8	B1/B5/B8	B1/B5/B8
GSM	EGSM900/ DCS1800	GSM850/EGSM900/ DCS1800/PCS1900	EGSM900/ DCS1800	-

NOTE

B41 only supports 140 MHz operating frequency (2535–2675 MHz).

2.2. Key Features

Table 4: Key Features

Features	Details
Dower Cumbly	Supply voltage: 3.4–4.5 V
Power Supply	 Typical supply voltage: 3.8 V
	Text and PDU mode
SMS	 Point-to-point MO and MT
SIVIS	 SMS cell broadcast
	 SMS storage: (U)SIM or ME, ME by default
(U)SIM Interface	Supports (U)SIM card: 1.8/3.0 V
	Supports one digital audio interface: PCM Interface
	 Supports one analog audio input and one analog audio output
Audio Features	 GSM: HR/FR/EFR/AMR/AMR-WB
Addio i Galdies	 WCDMA: AMR/AMR-WB
	 LTE: AMR/AMR-WB
	 Supports echo cancellation and noise suppression.
	 Used for audio function with external codec
PCM Interface	 Supports 16-bit linear encoding format
POW IIIlellace	 Supports short frame
	 Supports master and slave* modes
Analog audio Interface Supports one analog audio input and one analog audio output chan	
	 Supports three SPI (one is open by default, and the other two are
	used by multiplexing)
SPI	 1.8 V power domain
	 Max. clock frequency 52 MHz
	 Supports master and slave* modes
	 Supports one I2C interface
I2C Interface	 Complies with I2C bus protocol specifications (100/400 kHz)
120 interface	 Supports master mode only, and the multi-host mode is not
	supported
USB Interface	 Compliant with USB 2.0 specification (slave and master modes
OOD IIITEIIACE	are supported); the data transfer rate can reach up to 480 Mbps

	 Used for AT command communication, data transmission, software debugging and firmware upgrade Supports USB serial driver for Windows 7/8/8.1/10/11, Linux 2.6–6.5 and Android 4.x–13.x systems 		
WLAN Interface	Supports SDIO interface for WLAN function		
SD Interface	Supports SD 3.0 protocol		
RGMII/RMII Interface ¹	 Supports one RGMII/RMII interface Supports RGMII: 1.8 V Supports RMII: 1.8/3.3 V 		
UART Interfaces	 Main UART: Used for AT command communication and data transmission Baud rate: 115200 bps by default, Max 921600 bps Supports RTS and CTS hardware flow control Debug UART: Used for the output of partial logs Baud rate: 115200 bps. UART2 Interface: Supports RTS and CTS hardware flow control Baud rate: 115200 bps by default Multiplexed by GPIO7, MAIN_DTR, PCM_SYNC, PCM_CLK, PCM_DOUT and PCM_DIN 		
ADC Interfaces	Supports two ADC interfacesVoltage range: 0 V–VBAT_BB		
Network Indication	NET_STATUS to indicate network connectivity status		
AT Commands	Compliant with 3GPP TS 27.007, 3GPP TS 27.005 and Quectel enhanced AT commands		
Rx-diversity	Supports LTE Rx-diversity		
Antenna Interface	 Supports Main antenna interface (ANT_MAIN) and Rx-diversity antenna interface (ANT_DRX) 50 Ω impedance 		
 GSM850: Class 4 (33 dBm ±2 dB) EGSM900: Class 4 (33 dBm ±2 dB) DCS1800: Class 1 (30 dBm ±2 dB) PCS1900: Class 1 (30 dBm ±2 dB) GSM850 8-PSK: Class E2 (27 dBm ±3 dB) EGSM900 8-PSK: Class E2 (27 dBm ±3 dB) DCS1800 8-PSK: Class E2 (26 dBm ±3 dB) PCS1900 8-PSK: Class E2 (26 dBm ±3 dB) WCDMA: Class 3 (23 dBm ±2 dB) LTE-FDD: Class 3 (23 dBm ±2 dB) 			

¹ EC200A-EL does not support RGMII, and pins 79, 80, 82–84 are RESERVED.

	• LTE-TDD: Class 3 (23 dBm ±2 dB)
	Supports 3GPP R9 non-CA Cat 4 FDD and TDD
	Supports 1.4/3/5/10/15/20 MHz RF bandwidth
	Supports MIMO in DL direction
LTE Features	 Supports uplink QPSK, 16QAM modulation
	 Supports downlink QPSK, 16QAM and 64QAM modulation
	LTE-FDD: Max. 150 Mbps (DL)/50 Mbps (UL)
	LTE-TDD: Max. 130 Mbps (DL)/30 Mbps (UL)
	Supports 3GPP R7 HSPA+/HSDPA/HSUPA/WCDMA
	 Supports QPSK, 16QAM, 64QAM modulation
UMTS Features	HSPA+: Max. 21 Mbps (DL)
	HSUPA: Max. 5.76 Mbps (UL)
	WCDMA: Max. 384 kbps (DL)/384 kbps (UL)
	GPRS:
	 Supports GPRS multi-slot class 12
	 Coding scheme: CS 1–4
	 Max. 85.6 kbps (DL)/85.6 kbps (UL)
	EDGE:
GSM Features	 Supports EDGE multi-slot class 12
	 Supports GMSK and 8-PSK for different MCS (Modulation
	and Coding Scheme)
	 Downlink coding schemes: MCS 1–9
	 Uplink coding schemes: MCS 1–9
	 Max. 236.8 kbps (DL)/236.8 kbps (UL)
	 Supports TCP/UDP/PPP/NITZ/FTP/HTTP/PING/CMUX/
Internet Protocol Features	HTTPS/SSL/FILE/MMS*/SMTP*/SMTPS* protocols
	 Supports PAP and CHAP for PPP connections
	Operating temperature range ² : -35 to +75 °C
Temperature Range	 Extended temperature range ³: -40 to +85 °C
	 Storage temperature range: -40 to +90 °C
Firmware Upgrade	Use USB interface or FOTA to upgrade.
RoHS	All hardware components are fully compliant with EU RoHS directive.

² Within the operating temperature range, the module meets 3GPP specifications.

³ Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband
- DDR + NAND flash
- Radio frequency
- Peripheral interface

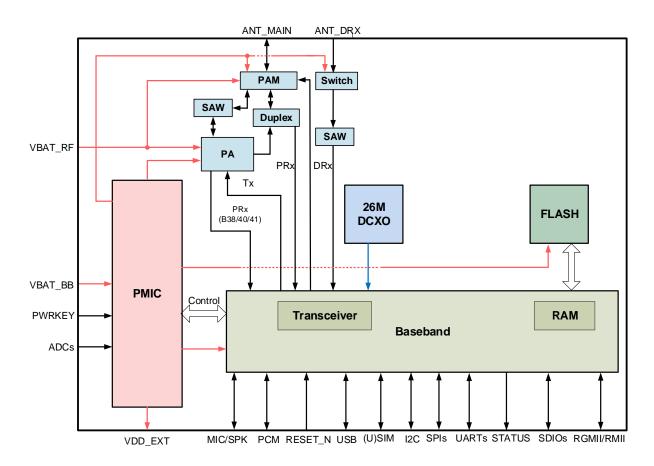


Figure 1: Functional Diagram

2.4. Pin Assignment

The following figure illustrates the pin assignment of the module.

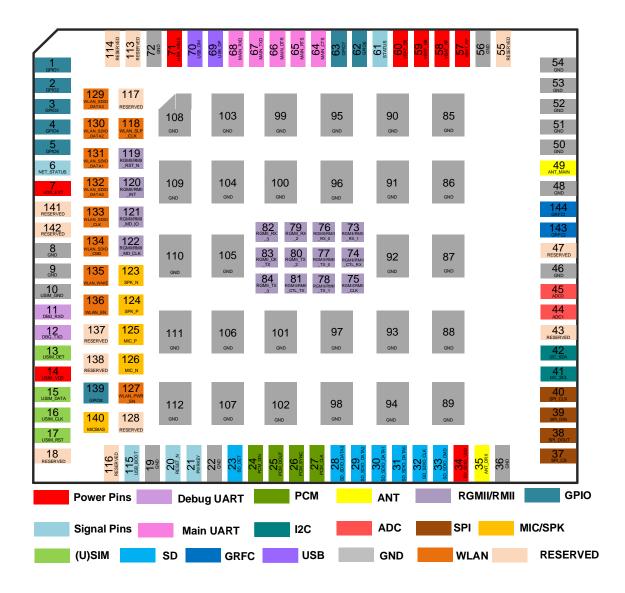


Figure 2: Pin Assignment (Top View)

NOTE

- 1. USB_BOOT (pin 115) and RGMII/RMII_RST_N (pin 119) cannot be pulled up before the module starts up successfully.
- 2. The unused and RESERVED pins should be kept open, and all GND pins should connect to the ground.
- 3. Antenna tuner control interface (pins 143 and 144) is optional. For details, please contact Quectel Technical Support.

4. EC200A-EL does not support RGMII, and pins 79, 80, 82–84 are RESERVED.

2.5. Pin Description

The following table shows the DC characteristics and pin descriptions.

Table 5: I/O Parameters Definition

Туре	Description
Al	Analog Input
AIO	Analog Input/Output
AO	Analog Output
DI	Digital Input
DIO	Digital Input/Output
DO	Digital Output
OD	Open Drain
PI	Power Input
PO	Power Output

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	59, 60	PI	Power supply for the module's baseband part	Vmax = 4.5 V Vmin = 3.4 V Vnom = 3.8 V	It must be provided with sufficient current of at least

			Power supply for the	_	0.8 A ⁴ . A test point is recommended to be reserved. It must be provided with sufficient current
VBAT_RF	57, 58	PI	module's RF part		of at least 2.0 A. A test point is recommended to be reserved.
VDD_EXT	7	РО	Provide 1.8 V for external circuit	Vnom = 1.8 V I _O max = 50 mA	It can provide a pull-up power to the external GPIO. A test point is recommended to be reserved.
GND	8, 9,19, 2	22, 36,	46, 48, 50–54, 56, 72, 85–	112	
Turn On/Off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	21	DI	Turn on/off the module	V _{IL} max = 0.5 V	VBAT power domain. Active low. A test point is recommended to be reserved.
RESET_N	20	DI	Reset the module		1.8 V power domain. Active low after the module starts up.
Indication Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
					An external

⁴ If you choose to use the module that supports the APT function, the VBAT_BB must provide sufficient current of at least 1.5 A. For details, please consult Quectel Technical Support.

					it open.
NET_STATUS	6	DO	Indicate the module's network activity status	_	1.8 V power domain. If unused, keep it open.
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	71	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	Typ. 5.0 V. A test point is recommended to be reserved.
USB_DP	69	AIO	USB 2.0 differential data (+)		90 Ω differential impedance.
USB_DM	70	AIO	USB 2.0 differential data (-)		Compliant with USB 2.0. It is recommended to reserve test points.
(U)SIM Interface					
-· ··				5.0	
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
Pin Name USIM_GND	Pin No. 10	I/O	Description Dedicated ground for (U)SIM card	_	Connect to the ground of
		I/O PO	Dedicated ground for	_	Connect to the
USIM_GND	10		Dedicated ground for (U)SIM card	Characteristics Low voltage: Vmin = 1.67 V Vnom = 1.8 V Vmax = 1.93 V High voltage: Vmin = 2.7 V Vnom = 3.0 V	Connect to the ground of (U)SIM card. Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by
USIM_GND USIM_VDD	10	PO	Dedicated ground for (U)SIM card (U)SIM card power supply	Characteristics Low voltage: Vmin = 1.67 V Vnom = 1.8 V Vmax = 1.93 V High voltage: Vmin = 2.7 V Vnom = 3.0 V	Connect to the ground of (U)SIM card. Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by
USIM_GND USIM_VDD USIM_DATA	10 14	PO	Dedicated ground for (U)SIM card (U)SIM card power supply (U)SIM card data	Characteristics Low voltage: Vmin = 1.67 V Vnom = 1.8 V Vmax = 1.93 V High voltage: Vmin = 2.7 V Vnom = 3.0 V Vmax = 3.3 V	Connect to the ground of (U)SIM card. Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by

If unused, keep it open. **SD** Interface DC Pin Name Pin No. I/O **Description** Comment **Characteristics** SD_SDIO_CLK 32 DO SD card SDIO clock 33 SD card SDIO command SD_SDIO_CMD DIO 31 SD card SDIO bit 0 SD_SDIO_DATA0 DIO SD_SDIO_VDD 30 DIO SD card SDIO bit 1 SD_SDIO_DATA1 29 DIO SD card SDIO bit 2 SD SDIO DATA2 1.8/2.85 V power domain. 28 SD card SDIO bit 3 SD_SDIO_DATA3 DIO If unused, keep Low Voltage: it open. Vmin=1.67V Vnom = 1.8 VVmax = 1.93 V SD card SDIO power РО SD_SDIO_VDD 34 supply High Voltage: Vmin = 2.7 VVnom = 2.85 VVmax = 3.05 V1.8 V power domain. If SD_DET* 23 DI SD card hot-plug detect VDD_EXT unused, keep it open. **Main UART** DC **Pin Name** Pin No. I/O Comment **Description Characteristics** Connect to MCU's CTS. Clear to send signal from 1.8 V power DO MAIN CTS 64 the module domain. If unused, keep VDD_EXT it open. Connect to MCU's RTS. Request to send signal DΙ MAIN_RTS 65 1.8 V power to the module domain. If unused, keep

					it open.
MAIN_DTR	66	DI	Main UART data terminal ready	-	1.8 V power
MAIN_RXD	68	DI	Main UART receive	_	domain. If unused, keep them open.
MAIN_TXD	67	DO	Main UART transmit	-	
Debug UART					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	11	DI	Debug UART receive		1.8 V power domain.
DBG_TXD	12	DO	Debug UART transmit	VDD_EXT	If unused, keep it open.
SPI					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SPI_CS SPI_CLK	40	DIO	SPI chip select SPI clock	VDD_EXT	1.8 V power domain. When the module is used as master device, these pins are in the output state; when the module is used as master device, these pins are in the input state.
SPI_DOUT	38	DO	SPI data output		1.8 V power domain.
SPI_DIN	39	DI	SPI data input		If unused, keep them open.
I2C Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL	41	OD	I2C serial clock (used for external codec)	- VDD_EXT	1.8 V pull-up resistor is
I2C_SDA	42	OD	I2C serial data (used for external codec)	VDD_LX1	needed. If unused, keep

them open.

PCM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_SYNC	26	DIO	PCM data frame sync		1.8 V power
PCM_CLK	27	DIO	PCM clock	VDD_EXT	domain. When the module is used as master device, these pins are in the output state; when the module is used as slave* device, they are in the input state. If unused, keep them open.
PCM_DIN	24	DI	PCM data input	_	1.8 V power domain.
PCM_DOUT	25	DO	PCM data output		If unused, keep them open.
WLAN Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
WLAN_SLP_CLK	118	DO	WLAN sleep clock		
WLAN_PWR_EN	127	DO	WLAN power supply enable control	_	
WLAN_SDIO_ DATA3	129	DIO	WLAN SDIO data bit 3		1.8 V power
WLAN_SDIO_ DATA2	130	DIO	WLAN SDIO data bit 2	VDD_EXT	domain. If unused, keep
WLAN_SDIO_ DATA1	131	DIO	WLAN SDIO data bit 1	_	them open.
WLAN_SDIO_ DATA0	132	DIO	WLAN SDIO data bit 0	_	
WLAN_SDIO_ CLK	133	DO	WLAN SDIO clock	_	

WLAN_SDIO_ CMD	134	DIO	WLAN SDIO command			
WLAN_WAKE	135	DI	Wake up the host by an external Wi-Fi module	_		
WLAN_EN	136	DO	WLAN function enable control	-		
RF Antenna Interfa	се					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
ANT_DRX	35	Al	Diversity antenna interface		50 Ω characteristic	
ANT_MAIN	49	AIO	Main antenna interface		impedance.	
ADC Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
ADC0	45	Al	General-purpose ADC	Voltage Range:	If unused, keep	
ADC1	44	Al	interface	0 V-VBAT_BB	them open.	
RGMII/RMII Interface						
RGWIII/RIWIII Internac	e					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
		I/O DI	Description RGMII/RMII receive data bit 1	_	Comment	
Pin Name	Pin No.		RGMII/RMII receive data	Characteristics 1.8 V	Comment	
Pin Name RGMII/RMII_RX_1 RGMII/RMII_CTL_	Pin No. 73	DI	RGMII/RMII receive data bit 1 RGMII/RMII receive	Characteristics 1.8 V RGMII/RMII: VILMIN = -0.3 V VILMIN = 0.54 V VIHMIN = 1.26 V		
Pin Name RGMII/RMII_RX_1 RGMII/RMII_CTL_ RX	Pin No. 73 74	DI DI	RGMII/RMII receive data bit 1 RGMII/RMII receive control	1.8 V RGMII/RMII: VILMIN = -0.3 V VILMIN = 0.54 V	1.8 V power domain for	
Pin Name RGMII/RMII_RX_1 RGMII/RMII_CTL_ RX RGMII/RMII_CLK	Pin No. 73 74 75	DI DI	RGMII/RMII receive data bit 1 RGMII/RMII receive control RGMII/RMII clock RGMII/RMII receive data	Characteristics 1.8 V RGMII/RMII: VILMIN = -0.3 V VILMIN = 0.54 V VIHMIN = 1.26 V VIHMIN = 2.0 V VOLMAX = 0.2 V	1.8 V power domain for RGMII. 1.8/3.3 V power	
Pin Name RGMII/RMII_RX_1 RGMII/RMII_CTL_ RX RGMII/RMII_CLK RGMII/RMII_RX_0	Pin No. 73 74 75 76	DI DI DI	RGMII/RMII receive data bit 1 RGMII/RMII receive control RGMII/RMII clock RGMII/RMII receive data bit 0 RGMII/RMII transmit	Characteristics 1.8 V RGMII/RMII: VILMIN = -0.3 V VILMIN = 0.54 V VIHMIN = 1.26 V VIHMIN = 2.0 V VOLMAX = 0.2 V VOHMIN = 1.6 V	1.8 V power domain for RGMII. 1.8/3.3 V power	
Pin Name RGMII/RMII_RX_1 RGMII/RMII_CTL_ RX RGMII/RMII_CLK RGMII/RMII_RX_0 RGMII/RMII_TX_0	Pin No. 73 74 75 76 77	DI DI DI DI DO	RGMII/RMII receive data bit 1 RGMII/RMII receive control RGMII/RMII clock RGMII/RMII receive data bit 0 RGMII/RMII transmit data bit 0 RGMII/RMII transmit	Characteristics 1.8 V RGMII/RMII: VILMIN = -0.3 V VILMIN = 0.54 V VILMIN = 1.26 V VILMIN = 2.0 V VOLMIN = 0.2 V VOLMIN = 1.6 V 3.3 V RMII: VILMIN = -0.3 V VILMIN = -0.3 V VILMIN = -0.8 V VILMIN = 2.0 V VILMIN = 3.6 V VOLMIN = 0.4 V	1.8 V power domain for RGMII. 1.8/3.3 V power domain for RMII. If unused, keep	

 $^{^{\}rm 5}$ EC200A-EL does not support RGMII function, and pins 79, 80, 82–84 are RESERVED.

RGMII_TX_2 ⁵	80	DO	RGMII transmit data bit 2		_
RGMII/RMII_CTL_ TX	81	DO	RGMII/RMII transmit control	1.8 V RGMII/RMII: VoLmax = 0.2 V VoHmin = 1.6 V 3.3 V RMII: VoLmax = 0.4 V VOHmin = 2.4 V	_
RGMII_RX_3 ⁵	82	DI	RGMII receive data bit 3		
RGMII_CK_TX ⁵	83	DO	RGMII transmit clock	VDD_EXT	
RGMII_TX_3 ⁵	84	DO	RGMII transmit data bit 3	-	
RGMII/RMII_INT	120	DI	RGMII/RMII interrupt	1.8 V RGMII/RMII:	
RGMII/RMII_MD_ IO	121	DIO	RGMII/RMII management data input/output	V _I Lmin = -0.3 V V _I Lmax = 0.54 V V _I Hmin = 1.26 V	
RGMII/RMII_MD_ CLK	122	DO	RGMII/RMII management data clock	VIHMAX = 2.0 V VOLMAX = 0.2 V VOHMIN = 1.6 V 3.3 V RMII: VILMIN = -0.3 V VILMAX = 0.8 V VIHMIN = 2.0 V VIHMAX = 3.6 V VOLMAX = 0.4 V VOHMIN = 2.4 V	
RGMII/RMII_RST_ N	119	DO	RGMII/RMII reset external PHY	VDD_EXT	1.8 V power domain. It cannot be pulled up high level before the module starts up successfully. If unused, keep it open.
Analog Audio Interf	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

SPK_P	124	АО	Analog audio differential output channel (+)		
SPK_N	123	АО	Analog audio differential output channel (-)		
MIC_P	125	Al	Microphone input channel (+)		
MIC_N	126	Al	Microphone input channel (-)		
MICBIAS	140	РО	Microphone bias voltage		
Other Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_BOOT	115	DI	Forces the module to enter download mode	VDD_EXT	1.8 V power domain. Active High. A test point is recommended to be reserved.
GRFC1	144	DO			1.8 V power domain.
GRFC2	143	DO	Generic RF controller		If unused, keep them open.
GPIO Pins					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO1	1	DIO	General-purpose input/output		
GPIO2	2	DIO	General-purpose input/output	_	
GPIO3	3	DIO	General-purpose input/output	_	
GPIO4	4	DIO	General-purpose input/output	- VDD_EXT	1.8 V power domain.
GPIO5	5	DIO	General-purpose input/output	- VDD_LXI	If unused, keep them open.
GPIO6	62	DIO	General-purpose input/output		
GPIO7	63	DIO	General-purpose input/output	_	
GPIO8	139	DIO	General-purpose input/output	_	

RESERVED Pins		
Pin Name	Pin No.	Comment
RESERVED	18, 43, 47, 55, 113, 114, 116, 117, 128, 137, 138, 141,142	Keep them
NEOLIVED	10, 43, 47, 33, 113, 114, 110, 117, 120, 137, 130, 141,142	open.

2.6. EVB Kit

To help you develop applications with the module, Quectel supplies an evaluation board (LTE OPEN EVB) with accessories to develop or test the module. For more details, see *document [1]*.

3 Operating Characteristics

3.1. Operating Modes

The table below outlines operating modes of the module.

Table 7: Overview of Operating Modes

Mode	Details			
	Idle	Software is active. The module is registered on the network and ready to send and receive data.		
Full Functionality Operation	Voice/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.		
Minimum	AT+CFUN=0 can set the module to a minimum functionality mode. In this case,			
Functionality Mode	both RF function	and (U)SIM card will be invalid.		
Airplane Mode	AT+CFUN=4 car be invalid.	n set the module to airplane mode. In this case, RF function will		
Sleep Mode	In this mode, current consumption of the module will be reduced to the minimal level. In this mode, the module can still receive paging, SMS, voice call and TCP/UDP data from network.			
Power Down Mode	In this mode, the stops working.	e VBAT power supply is constantly turned on and the software		

NOTE

For more details about the AT command, see document [2].

3.2. Sleep Mode

In sleep mode, current consumption of the module will be reduced to the minimal level. The following section describes the power saving procedures.

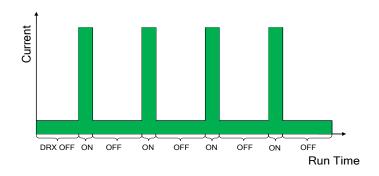


Figure 3: DRX Run Time and Current Consumption in Sleep Mode

NOTE

DRX cycle values are transmitted over the wireless network.

3.2.1. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to let the module enter sleep mode.

- Enable sleep function through related API.
- Ensure that all pins configured as interrupt wake-up function in the module are in non-wake-up state.
- The host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure shows the connection between the module and the host.

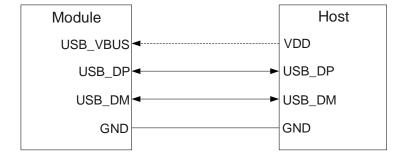


Figure 4: Sleep Mode Application with USB Remote Wakeup

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will send remote wakeup signals via USB bus to wake up the host.

3.2.2. USB Application without USB Remote Wakeup Function

If the host supports USB suspend/resume, but does not support remote wakeup function, the host needs to be woken up by the module's GPIO.

There are three preconditions to let the module enter sleep mode.

- Enable sleep function through related API.
- Ensure that all pins configured as interrupt wake-up function in the module are in non-wake-up state.
- The host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure shows the connection between the module and the host.

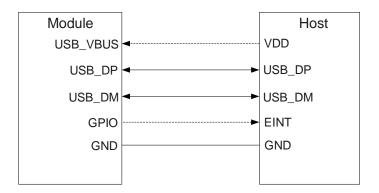


Figure 5: Sleep Mode Application without USB Remote Wakeup

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will send a signal through GPIO to wake up the host.

3.2.3. USB Application without USB Suspend Function

If the host does not support USB suspend function, USB_VBUS should be disconnected through an external control circuit to set the module to enter sleep mode.

- Enable sleep function through related API.
- Ensure that all pins configured as interrupt wake-up function in the module are in non-wake-up state.
- Disconnect USB VBUS.

The following figure shows the connection between the module and the host.

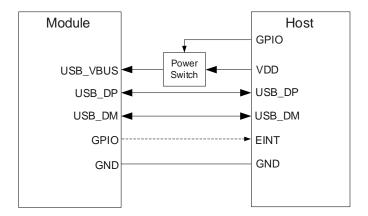


Figure 6: Sleep Mode Application without Suspend Function

Restoring the power supply to USB_VBUS will wake up the module.

NOTE

- 1. Please pay attention to the level match shown in dotted line between the module and the host.
- 2. For more details about API, see document [3].

3.3. Airplane Mode

When the module enters into airplane mode, the RF function will be disabled, and all AT commands related to it will be inaccessible. This mode can be set via the following ways.

AT+CFUN=<fun> provides choices of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode (Both (U)SIM and RF functions are disabled).
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode (RF function is disabled).

NOTE

For more details about AT command, see document [2].

3.4. Power Supply

3.4.1. Power Supply Pins

The module provides four VBAT pins dedicated to the connection with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for module's RF part
- Two VBAT_BB pins for module's baseband part

The following table shows the details of power supply.

Table 8: Pin Definition of Power Supply

Pin Name	Pin No.	I/O	Description	Comment
VBAT_BB	59, 60	PI	Power supply for the module's baseband part	It must be provided with sufficient current of at least 0.8 A ⁶ . A test point is recommended to be reserved.
VBAT_RF	57, 58	PI	Power supply for the module's RF part	It must be provided with sufficient current of at least 2.0 A. A test point is recommended to be reserved.
VDD_EXT	7	PO	Provide 1.8V for external circuit	It can provide a pull-up power to the external GPIO. A test point is recommended to be reserved.

_

⁶ If you use the module that supports the APT function, the VBAT_BB should provide sufficient current of at least 1.5 A. For details, please contact Quectel Technical Support.

3.4.2. Reference Design for Power Supply

The performance of the module largely depends on the power source. For the module that supports GSM network, the power supply of the module should be able to provide sufficient current of at least 2.8 A 7. If the voltage drops between input and output is not too high, it is suggested that an LDO should be used to supply power to the module. If there is a big voltage difference between input and the desired output VBAT, a buck converter is preferred as the power supply.

The following figure shows a reference design for +5 V input power source.

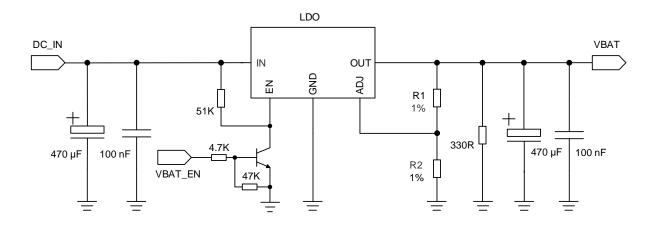


Figure 7: Reference Design of Power Supply

NOTE

It is recommended to design switch control for power supply.

3.4.3. Requirements for Voltage Stability

The power supply range of the module is from 3.4 V to 4.5 V. Please make sure the input voltage will never drop below 3.4 V.

⁷ If you use the module that does not support the GSM frequency, you can select the power supply with sufficient current of at least 2.0 A in reference design.

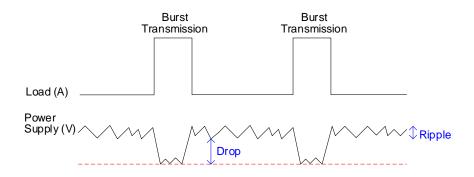


Figure 8: Power Supply Limits during Burst Transmission

To decrease the voltage drop, a bypass capacitor of about 100 μ F with low ESR (ESR \leq 0.7 Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT_BB and VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be not less than 1 mm; and the width of VBAT_RF trace should be not less than 2 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, to avoid the surge, use a TVS diode of which working peak reserve voltage is 4.7 V and peak pulse power is up to 2550 W. The following figure shows the reference circuit.

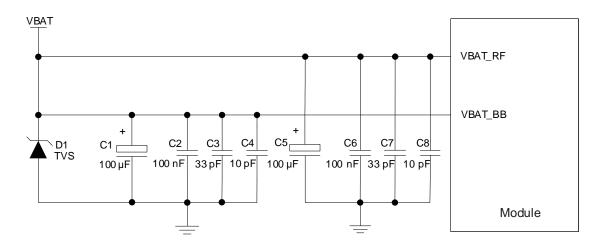


Figure 9: Star Structure of the Power Supply

3.5. Turn On

3.5.1. Turn on the Module with PWRKEY

Table 9: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	21	DI	Turn on/off the module	VBAT power domain. Active low. A test point is recommended to be reserved.

When the module is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 650 ms. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

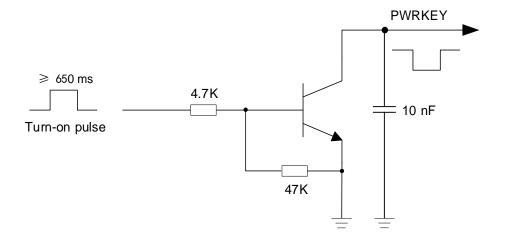


Figure 10: Reference Circuit of Turning on the Module Using Driving Circuit

The other way to control the PWRKEY is using a button directly. When pressing the button, fingers may experience electrostatic strike. Therefore, an ESD component should be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

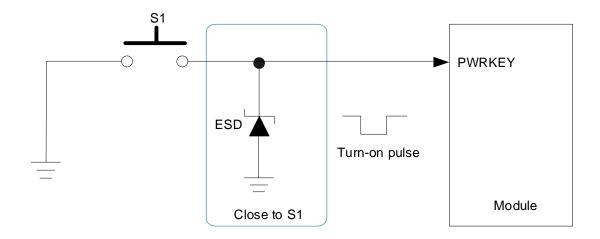


Figure 11: Reference Circuit of Turning on the Module with Button

The power-up scenario is illustrated in the following figure.

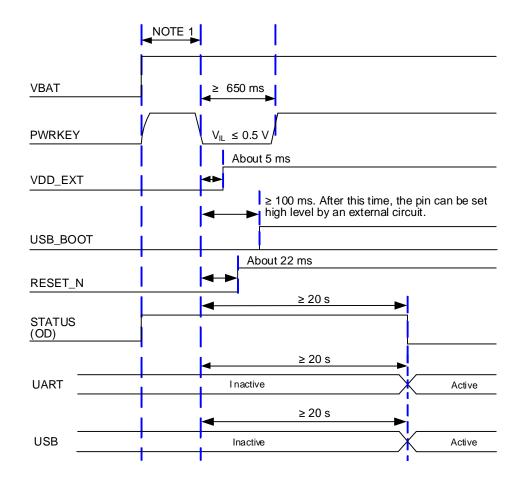


Figure 12: Power-up Timing

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY pin is not less than 30 ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 4.7 k Ω resistor if module needs to be powered on automatically and shutdown is not needed.

3.6. Turn Off

The following procedures can be used to turn off the module:

3.6.1. Turn off the Module with PWRKEY

Driving the PWRKEY to a low-level voltage for 650 ms at least, then the module will execute power-down procedure after the pull-down is completed. The timing of turning off the module is illustrated in the following figure.

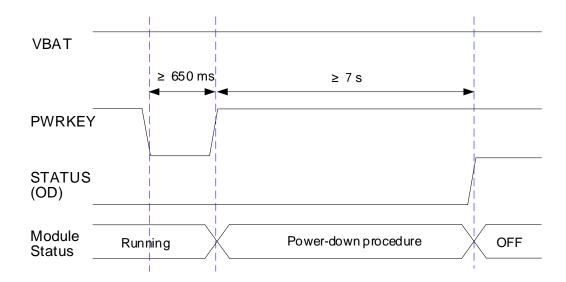


Figure 13: Timing of Turning off Module

3.6.2. Turn off the Module with AT Command

It is safe to use **AT+QPOWD** to turn off the module, which is equivalent to turn off the module via PWRKEY pin.

For details about AT+QPOWD command, see document [2].

- 1. To avoid damaging the data of internal flash, do not switch off the power supply when the module works normally. Only after shutting down the module with PWRKEY or AT command can you cut off the power supply.
- When turning off module with the AT command, please keep PWRKEY at high level after the execution of the command. Otherwise, the module will be turned on again after successfully turn-off.

3.7. Reset

The module can be reset by driving the RESET_N low for at least 300 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 10: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	20	DI	Reset the module	1.8 V power domain.Active low after the module starts up.

The recommended circuit is equivalent to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

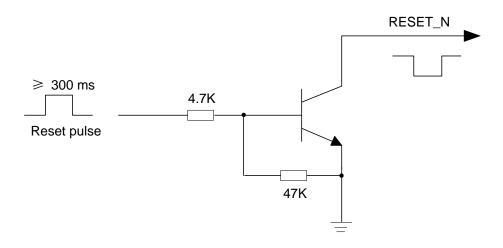


Figure 14: Reference Circuit of RESET_N with Driving Circuit

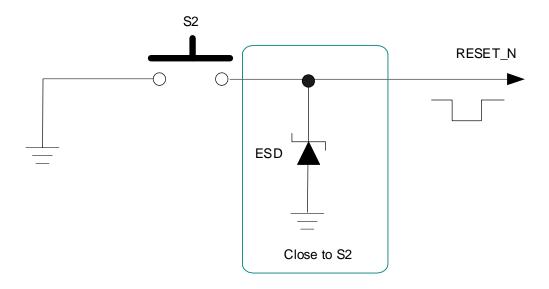


Figure 15: Reference Circuit of RESET_N with Button

The timing of resetting module is illustrated in the following figure.

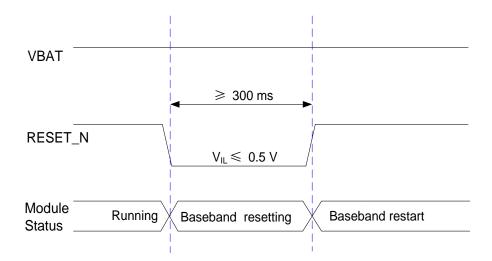


Figure 16: Timing of Resetting Module

NOTE

- 1. Please ensure that there is no large capacitance with the max. value exceeding 10 nF on PWRKEY and RESET_N pins.
- 2. RESET_N only resets the internal baseband chip of the module and does not reset the power management chip.

4 Application Interfaces

4.1. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface complying with USB 2.0 specification, with full-speed (12 Mbps) and high-speed (480 Mbps) modes supported. It can serve as a slave device and master device, and can be used for AT command communication, data transmission, software debugging and firmware upgrade. The following table shows the pin definition of USB interface.

Table 11: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment	
USB_VBUS	71	AI	USB connection detect	Typ. 5.0 V. A test point is recommended to be reserved.	
USB_DP	69	AIO	USB differential data (+)	90 Ω differential	
USB_DM	70	AIO	USB differential data (-)	impedance.Compliant with USB 2.0.It is recommended to reserve test points.	

For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.

It is recommended to reserve test points for debugging and firmware upgrade in your designs. The following figure shows a reference circuit of USB interface.

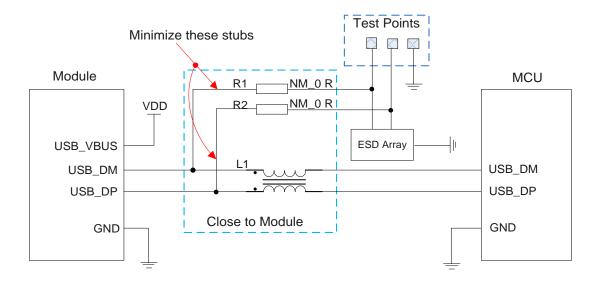


Figure 17: Reference Circuit of USB Interface

A common mode choke L1 is recommended to be added in series between the module and your MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R1 and R2) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1, R1 and R2 components must be placed close to the module, and also resistors R1 and R2 should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when designing the USB interface, to meet USB specifications.

- It is important to route the USB signal traces as differential pairs with ground surrounded. The impedance of USB differential trace is 90Ω .
- Do not route signal traces under crystals, oscillators, magnetic devices, PCIe and RF signal traces.
 It is important to route the USB differential traces in inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below.
- Junction capacitance of the ESD protection device might cause influences on USB data traces, so
 please pay attention to the selection of the device. Typically, the stray capacitance should be less
 than 2 pF for USB.
- If possible, reserve a 0 Ω resistor on USB DP and USB DM lines respectively.

For more details about the USB specifications, please visit http://www.usb.org/home.

NOTE

If the OTG function needs to be used, the GPIO8 pin can be multiplexed into the USB_ID function. For GPIO configuration, see *document* [4].

4.2. USB_BOOT Interface

The module provides a USB_BOOT pin. Pull up USB_BOOT to VDD_EXT before powering on the module, which will enter the download mode when it is turned on. In this mode, the module supports firmware upgrade over USB interface.

Table 12: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	115	DI	Forces the module to enter download mode	1.8 V power domain. Active High. A test point is recommended to be reserved.

The following figure shows a reference circuit of USB_BOOT interface.

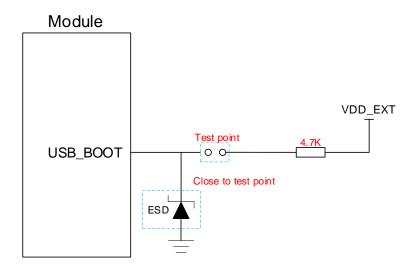


Figure 18: Reference Circuit of USB_BOOT Interface

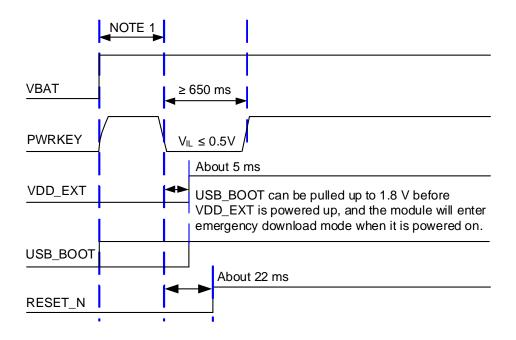


Figure 19: Timing Sequence for Entering Emergency Download Mode

- 1. Please make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is not less than 30 ms.
- 2. When using MCU to control module to enter the emergency download mode, please follow the above timing sequence. It is not recommended to pull up USB_BOOT to 1.8 V before powering up VBAT. Connect the test points directly as shown in *Figure 18* can manually force the module into download mode.
- 3. If the module is turned on normally, the USB_BOOT cannot be pulled up before the module starts up successfully.

4.3. (U)SIM Interface

The (U)SIM interface circuitry meets ETSI and IMT-2000 standards. Both 1.8 V and 3.0 V (U)SIM cards are supported.

Table 13: Pin Definition of (U)SIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_GND	10		Dedicated ground for (U)SIM card	
USIM_VDD	14	PO	(U)SIM card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM_DATA	15	DIO	(U)SIM card data	
USIM_CLK	16	DO	(U)SIM card clock	
USIM_RST	17	DO	(U)SIM card reset	
USIM_DET	13	DI	(U)SIM card hot-plug detect	1.8 V power domain. If unused, keep it open.

The module supports (U)SIM card hot-plug via the USIM_DET pin, the function supports low-level and high-level detections. By default, it is disabled, and can be configured via **AT+QSIMDET** command. For details about the AT command, see *document* [2].

The reference circuit of the 8-pin (U)SIM interface is as follows.

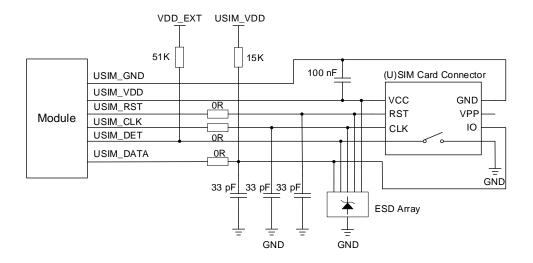


Figure 20: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

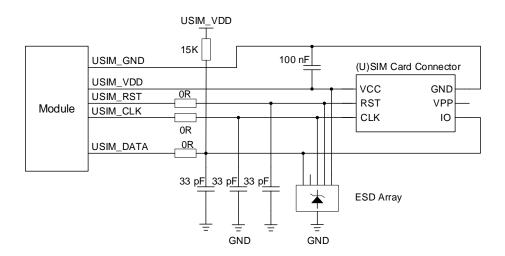


Figure 21: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in applications, please follow the criteria below in (U)SIM circuit design.

- Keep (U)SIM card connector as close as possible to the module. Keep the trace length as less than 200 mm as possible.
- Keep (U)SIM card signal traces away from RF and power supply traces.
- USIM VDD maximum bypass capacitor does not exceed 1uF.
- Ensure the ground between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM_VDD not less than 0.5 mm to maintain the same electric potential.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with ground surrounded.
- In order to offer good ESD protection, it is recommended to add a ESD array whose parasitic capacitance should not be more than 15 pF. The 0 Ω resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors on the USIM_DATA, USIM_CLK and USIM_RST traces are used for filtering interference. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

4.4. PCM and I2C Interfaces

The module provides one Pulse Code Modulation (PCM) digital interface and one I2C interface for audio design, and the PCM interface supports the primary mode (short frame synchronization) and the module works as both master and slave* device.

The module can only be used as primary devices in applications related to I2C interfaces and does not support multi-host mode. It conforms to the I2C bus protocol specification (100/400 kHz).

In short frame mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024, 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and also supports 4069 kHz PCM_CLK at 16 kHz PCM_SYNC.

The module supports a 16-bit linear encoding format. The following figure shows the sequence diagram of short frame mode. (PCM_SYNC = 8 kHz, PCM_CLK = 2048 kHz).

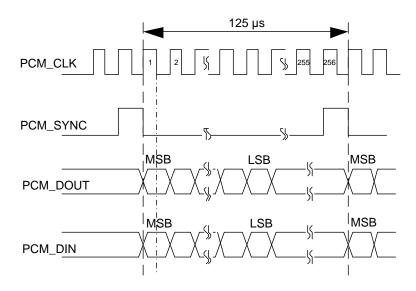


Figure 22: Timing Sequence for Short Frame Mode

Table 14: Pin Definition of PCM Interface

PCM_CLK 27 DIO PCM clock When the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the output state; when the module is as master device, the pins are in the input state; when the pins are in the	Pin Name	Pin No.	I/O	Description	Comment
PCM_CLK 27 DIO PCM clock pins are in the outpostate; when the most used as slave* deviately are in the input lift unused, keep the open. PCM_DIN 24 DI PCM data input 1.8 V power domain	PCM_SYNC	26	DIO	PCM data frame sync	1.8 V power domain. When the module is used
1 om_bit 21 bi 1 om data input	PCM_CLK	27	DIO) PCM clock	as master device, these pins are in the output state; when the module is used as slave* device, they are in the input state. If unused, keep them
	PCM_DIN	24	DI	PCM data input	1.8 V power domain.
PCM_DOUT 25 DO PCM data output open.	PCM_DOUT	25	DO	PCM data output	If unused, keep them open.

Table 15: Pin Definition of I2C Interface

Pin Name	Pin No.	I/O	Description	Comment
I2C_SCL	41	OD	I2C serial clock (used for external codec)	An external 1.8 V pull-up
I2C_SDA	42	OD	I2C serial data (used for external codec)	resistor is needed. If unused, keep them open.

Clock can be configured by AT command, and the default configuration is short frame synchronization format with 2048 kHz PCM_CLK and 8 kHz PCM_SYNC.

The following is a reference design for the PCM and I2C interfaces with external Codec chip.

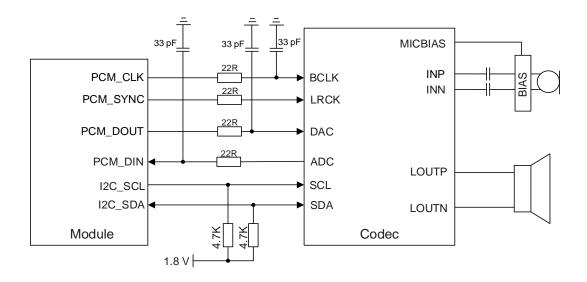


Figure 23: PCM and I2C Interface Circuit Reference Design

NOTE

It is recommended to reserve the RC (R = 22 Ω , C = 33 pF) circuit on the PCM signal line and the capacitor should be placed close to the module, especially on PCM_CLK.

4.5. Analog Audio Interfaces

The module provides one analog audio input channel and one analog audio output channel. Pin definition is shown in the following table.

Table 16: Pin Definition of Analog Audio Interfaces

Channel	Pin Name	Pin No.	I/O	Description
	MICBIAS	140	РО	Microphone bias voltage
AIN	MIC_P	125	Λ.Ι.	Microphone input channel (+)
	MIC_N	126	– Al	Microphone input channel (-)
AOUT	SPK_P	124	4.0	Analog audio differential output channel (+)
AOUT	SPK_N	123	– AO	Analog audio differential output channel (-)

- AIN channel is a differential input and used for microphone input. Electret microphones are usually used.
- AOUT channel is a differential output, typically used for receiver.

4.5.1. Notes on Analog Audio Interface Design

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10 pF and 33 pF) for filtering out RF interference, thus reducing TDD noise. Without placing this capacitor, TDD noise could be heard. Please note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity of the RF interference in the voice channel during GSM transmitting largely depends on the application design. Therefore, a suitable capacitor can be selected based on the test results. The filter capacitors on the PCB should be placed as close to the audio devices or audio interfaces as possible, and the traces should be as short as possible. They should go through the filter capacitors before arriving at other connection points.

In order to decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

4.5.2. Microphone Interface Circuit

The microphone interface reference circuit is shown below.

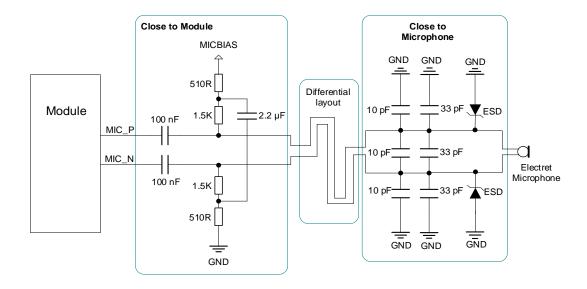


Figure 24: Microphone Interface Reference Circuit

MIC channel is sensitive to ESD, so it is not recommended to remove the ESD components used for protecting the MIC.

4.5.3. Earpiece Interface Circuit

Figure 25: Earpiece Interface Reference Circuit

4.6. UART Interface

The module provides three UART interfaces: the main UART, the debug UART and the UART2. The following shows their features.

- The main UART supports 4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps baud rates, and the baud rate is 115200 bps by default. It is used for data transmission and AT command communication. Also, it supports RTS and CTS hardware flow control.
- The debug UART supports 115200 bps baud rate, and is used for the output of partial logs.
- The UART2 supports 115200 bps baud rate by default, and supports RTS and CTS hardware flow control. The UART2 function can be realized by multiplexing GPIO7, MAIN_DTR, PCM_SYNC, PCM_CLK, PCM_DOUT, and PCM_DIN. For details, see *document [4]*.

Table 17: Pin Definition of Main UART

Pin Name	Pin No.	I/O	Description	Comment
MAIN_CTS	64	DO	Clear to send signal from the module	Connect to MCU's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	65	DI	Request to send signal to the module	Connect to MCU's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_DTR	66	DI	Main UART data terminal ready	
MAIN_RXD	68	DI	Main UART receive	If unused, keep it open.
MAIN_TXD	67	DO	Main UART transmit	

Table 18: Pin Definition of Debug UART

Pin Name	Pin No.	I/O	Description	Comment	
DBG_RXD	11	DI	Debug UART transmit	1.8 V power domain.	
DBG_TXD	12	DO	Debug UART receive	If unused, keep them open.	

The module provides a 1.8 V UART interface. A level translator should be used if the application is equipped with a 3.3 V UART interface. A level translator TXS0104EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.

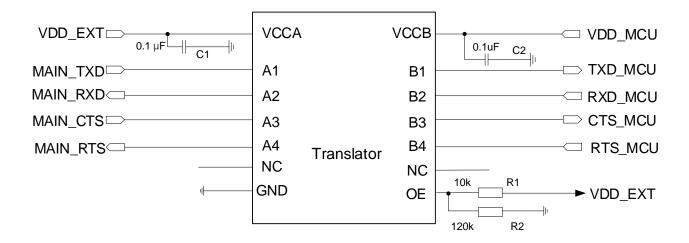


Figure 26: Reference Circuit with Translator Chip

Please visit http://www.ti.com for more information.

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, please refer to that shown in solid lines, but pay attention to the direction of connection.

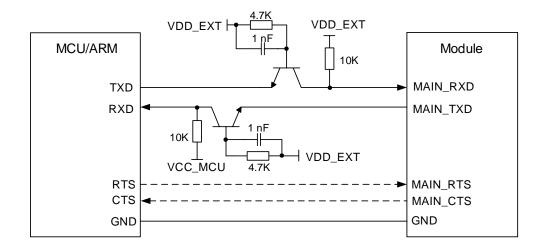


Figure 27: Reference Circuit with Transistor Circuit

NOTE

- 1. Transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module's CTS is connected to the MCU's CTS, and the module's RTS is connected to the MCU's RTS.

4.7. SD card Interface

The module provides one SD card interface supporting SD 3.0 protocol.

Table 19: Pin Definition of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SD_SDIO_CLK	32	DO	SD card SDIO clock	
SD_SDIO_CMD	33	DIO	SD card SDIO command	_
SD_SDIO_DATA0	31	DIO	SD card SDIO bit 0	1.8/2.85 V power
SD_SDIO_DATA1	30	DIO	SD card SDIO bit 1	domain. If unused, keep them open.
SD_SDIO_DATA2	29	DIO	SD card SDIO bit 2	
SD_SDIO_DATA3	28	DIO	SD card SDIO bit 3	
SD_SDIO_VDD	34	РО	SD card SDIO power supply	
SD_DET*	23	DI	SD card hot-plug detect	1.8 V power domain. If unused, keep it open.

The following figure illustrates a reference design of SD card interface with the module.

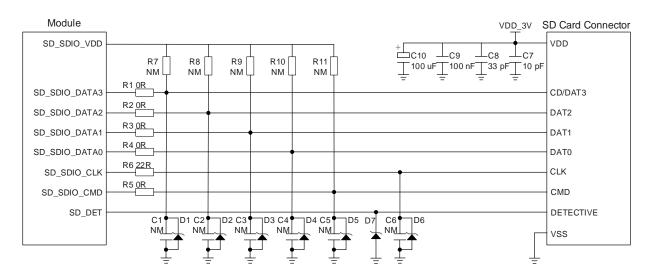


Figure 28: Reference Circuit of SD Card Interface

In SD card interface design, in order to ensure good communication performance with SD card, the following design principles should be complied with:

- The voltage range of SD card power supply VDD is 2.7–3.6 V and a sufficient current of at least 0.8 A should be provided. The maximum output current of SD_SDIO_VDD is 50 mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To avoid the jitter of bus, resistors R7–R11 are needed to pull up the SDIO to SD_SDIO_VDD. Resistance of these resistors is among 10–100 k Ω and not mounted by default. SD_SDIO_VDD must be used as the pull-up power.
- In order to improve the signal quality, it is recommended to add 0 Ω resistors R1 to R5 in series between the module and the SD card. Connect a 15–24 Ω resistor in series on the SD_SDIO_CLK, and the wiring distance from the module SD_SDIO_CLK pin to the resistor is less than 5 mm. The bypass capacitors C1 to C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module.
- In order to offer good ESD protection, it is recommended to add a ESD array on SD card pins near the SD card connector with junction capacitance less than 8 pF.
- It is important to route the SDIO signal traces with ground surrounded. The impedance of SDIO data trace is 50 Ω (±10 %).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals.
- It is recommended to keep the traces of SD_SDIO_CLK, SD_SDIO_DATA [0:3] and SD_SDIO_CMD with equal length (the difference among them is less than 1 mm) and the total routing length needs to be less than 50 mm.
- Make sure the adjacent trace spacing is twice of the trace width and the load capacitance of SDIO bus should be less than 15 pF.

4.8. WLAN_SDIO Interface

The module provides one low-power SDIO 3.0 interface and one control interface for WLAN design.

Table 20: Pin Definition of WLAN Interface

Pin Name	Pin No.	I/O	Description	Comment
WLAN_SLP_CLK	118	DO	WLAN sleep clock	
WLAN_PWR_EN	127	DO	WLAN power supply enable control	1.8 V power domain.
WLAN_SDIO_DATA3	129	DIO	WLAN SDIO data bit 3	If unused, keep them open.
WLAN_SDIO_DATA2	130	DIO	WLAN SDIO data bit 2	•

WLAN_SDIO_DATA1	131	DIO	WLAN SDIO data bit 1
WLAN_SDIO_DATA0	132	DIO	WLAN SDIO data bit 0
WLAN_SDIO_CLK	133	DO	WLAN SDIO clock
WLAN_SDIO_CMD	134	DIO	WLAN SDIO command
WLAN_WAKE	135	DI	Wake up the host by an external Wi-Fi module
WLAN_EN	136	DO	WLAN function enable control

In WLAN SDIO interface design, in order to ensure good performance, the following design principles should be complied with:

- To avoid the jitter of bus, it is necessary to reserve a Pull-up resistor on the SDIO signal line.
 Resistance of these resistors is among 10–100 kΩ and not mounted by default. It is recommended to use module VDD_EXT as the pull-up power.
- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO signal trace is 50 Ω ±10 %.
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals.
- It is recommended to keep the trace length difference between WLAN_SDIO_CLK, WLAN_SDIO_DATA and WLAN_SDIO_CMD less than 1 mm and the total routing length less than 50 mm.
- Keep termination resistors within 15–24 Ω on WLAN_SDIO_CLK lines near the module and keep the route distance from the WLAN_SDIO_CLK to termination resistors less than 5 mm.
- The spacing between SDIO signals and other signals needs to be greater than twice the trace width, and the load capacitance of SDIO bus is less than 15 pF.

4.9. ADC Interface

The module provides two Analog-to-Digital Converter (ADC) interfaces. In order to improve the accuracy of ADC, the trace of ADC interfaces should be surrounded by ground.

Table 21: Pin Definition of ADC Interface

Pin Name	Pin No.	I/O	Description	Comment
ADC0	45	AI	General-purpose ADC interface	If unused, keep them open.
ADC1	44	Al		

The voltage value of ADC can be read by API, see document [5].

The resolution of the ADC is up to 12 bits. The following table describes the characteristic of the ADC interface.

Table 22: Characteristics of ADC Interface

Name	Min.	Тур.	Max.	Unit
ADC0 Voltage Range	0	-	VBAT_BB	V
ADC1 Voltage Range	0	-	VBAT_BB	V
ADC Resolution	-	12	-	bits

NOTE

- 1. The input voltage of ADC should not exceed its corresponding voltage range.
- 2. It is prohibited to supply any voltage to ADC pin when VBAT is removed.
- 3. If the ADC pin uses a voltage divider circuit input, the voltage divider resistance should not exceed $100 \text{ k}\Omega$.

4.10. SPI

The module provides three SPI that support master and slave* mode and the maximum clock frequency is 52 MHz. One of them is open by default, and the other two need to be multiplexed from other functional pins. For details, see *document [4]*.

Table 23: Pin Definition of SPI

Pin Name	Pin No.	I/O	Description	Comment
SPI_CLK	40	DIO	SPI clock	1.8 V power domain. When the module is
SPI_CS	37	DIO	SPI chip select	used as master device, these pins are in the output state; when the module is used as slave*device, they

				are in the input state. If unused, keep them open.
SPI_DIN	39	DI	SPI data input	1.8 V power domain. If unused, keep them open.
SPI_DOUT	38	DO	SPI data output	

The following figures illustrate the circuit reference design.

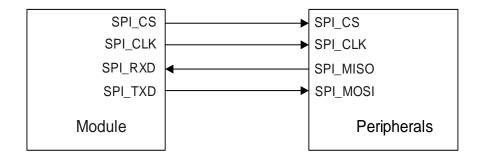


Figure 29: SPI Circuit Reference Design (Module as Master Device)

Figure 30: SPI Circuit Reference Design (Module as Slave* Device)

4.11. RGMII/RMII Interface

The module provides one RGMII/RMII interface that can be used to connect 100/1000 Mbps Ethernet PHYs.

Table 24: Pin Definition of RGMII/RMII Interface

Pin Name	Pin No.	I/O	Description	Comment
RGMII/RMII_RX_1	73	DI	RGMII/RMII receive data bit 1	
RGMII/RMII_CTL_RX	74	DI	RGMII/RMII receive control	_
RGMII/RMII_CLK	75	DI	RGMII/RMII clock	_
RGMII/RMII_RX_0	76	DI	RGMII/RMII receive data bit 0	_
RGMII/RMII_TX_0	77	DO	RGMII/RMII transmit data bit 0	_
RGMII/RMII_TX_1	78	DO	RGMII/RMII transmit data bit 1	_
RGMII_RX_2	79	DI	RGMII receive data bit 2	1.8 V power domain for
RGMII_TX_2	80	DO	RGMII transmit data bit 2	RGMII.
RGMII/RMII_CTL_TX	81	DO	RGMII/RMII transmit control	1.8/3.3 V power domain for RMII.
RGMII_RX_3	82	DI	RGMII receive data bit 3	If unused, keep them open.
RGMII_CK_TX	83	DO	RGMII transmit clock	
RGMII_TX_3	84	DO	RGMII transmit data bit 3	_
RGMII/RMII_INT	120	DI	RGMII/RMII interrupt	_
RGMII/RMII_MD_IO	121	DIO	RGMII/RMII management data input/output	_
RGMII/RMII_MD_CLK	122	DO	RGMII/RMII management data clock	-
RGMII/RMII_RST_N	119	DO	RGMII/RMII reset external PHY	1.8 V power domain. It cannot be pulled up high level before the module starts up successfully. If unused, keep it open.

The following figure shows a reference circuit of RMII MAC (3.3 V power domain) to PHY interface (3.3 V power domain).

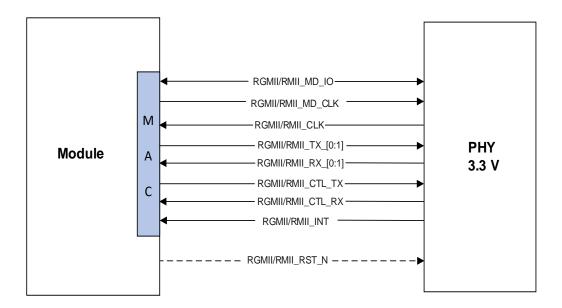


Figure 31: Reference Circuit of RMII to PHY Interface

The following figure shows a reference circuit of RGMII MAC (1.8 V power domain) to PHY (1.8 V power domain) interface.

Figure 32: Reference Circuit of RGMII to PHY Interface

To enhance the reliability and availability of application designs, please follow the criteria below for RGMII/RMII circuit design:

- Keep data signal and control signal traces of RMII and RGMII interfaces far away from sensitive circuits and signals such as RF signals, analog signals, and noise signals generated by clock, DC-DC.
- The single-ended impedance of RGMII data trace is 50 Ω ±10 %.
- The length difference of RGMII/RMII_TX_[0:1], RGMII_TX_[2:3], RGMII/RMII_CTL_TX, and RGMII_CK_TX should be less than 0.25 mm, and the space between the signal traces should be larger than twice of trace width. Similarly, the length difference of RGMII/RMII_RX_[0:1], RGMII_RX_[2:3], RGMII/RMII_CTL_RX, and RGMII/RMII_CLK should be less than 0.25 mm, and the space between the signal traces should be larger than twice of trace width.
- Spacing between Tx bus and Rx bus should be larger than 2.5 times of the trace width.
- Spacing between Tx bus or Rx bus should be larger than 3 times of the trace width.

NOTE

- 1. EC200A-EL does not support the RGMII function. Pins 79–80 and 82–84 are RESERVED.
- Pin 119 of the module is connected to PHYs chip as a multiplexing function. Note that this pin cannot be pulled up before the module starts up successfully. Other GPIO can also be used as RGMII/RMII_RST_N to reset PHYs chip.
- 3. Pay attention to the level match shown in dotted line.
- 4. If the RMII interface is used only, the length difference between RGMII/RMII_TX_[0:1] and RGMII/RMII_CTL_TX should be less than 2 mm; the length difference among RGMII/RMII_RX_[0:1], RGMII/RMII_CTL_RX and RGMII/RMII_CLK should be less than 2 mm.

4.12. Indication Signal

The pin definition of indication signal is as follows:

Table 25: Pin Definition of Indication Signal

Pin Name	Pin No.	I/O	Description	Comment
NET_STATUS	6	DO	Indicate the module's network activity status	1.8 V power domain. If unused, keep it open.
STATUS	61	OD	Running status indication	An external pull-up is required. If unused, keep it open.

4.12.1. Network Status Indication

The network indication pin NET_STATUS can be used to drive network status indication LEDs. The following table describes the pin definition and logic level changes in different network status.

Table 26: Working Status of Network Connection Status/Activity Indication

Pin Name	Status	Description
	Flicker slowly (200 ms High/1800 ms Low)	Network searching
NIET CTATUS	Flicker slowly (1800 ms High/200 ms Low)	Idle
_	Flicker quickly (125 ms High/125 ms Low)	Data transfer is ongoing
	Always High	Voice calling

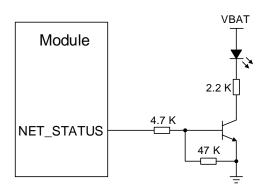


Figure 33: Reference Circuit of the Network Status Indication

4.12.2. STATUS

The STATUS pin is an open drain output for module's operation status indication. It can be connected to a GPIO of DTE with a pulled-up resistor, or as an LED indication circuit as below. When the module is turned on normally, the STATUS outputs a low level; otherwise, the STATUS will present high-impedance state.

The following figure shows different circuit designs of STATUS, and you can choose either of them according to the application demands.

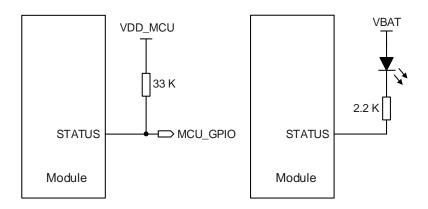


Figure 34: Reference Circuits of STATUS

The status pin cannot be used as an indication of module shutdown status when VBAT is not available.

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. Cellular Network

5.1.1. Antenna Interface & Frequency Bands

The pin definition of cellular network interfaces is shown below.

Table 27: Pin Definition of Cellular Network Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT_DRX	35	Al	Diversity antenna interface	50 Ω characteristic
ANT_MAIN	49	AIO	Main antenna interface	impedance.

Table 28: Operating Frequency of EC200A-CN

Transmit (MHz)	Receive (MHz)
880–915	925–960
1710–1785	1805–1880
1920–1980	2110–2170
824–849	869–894
880–915	925–960
1920–1980	2110–2170
	880–915 1710–1785 1920–1980 824–849 880–915

LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894
LTE-FDD B8	880–915	925–960
LTE-TDD B34	2010–2025	2010–2025
LTE-TDD B38	2570–2620	2570–2620
LTE-TDD B39	1880–1920	1880–1920
LTE-TDD B40	2300–2400	2300–2400
LTE-TDD B41	2535–2675	2535–2675

Table 29: Operating Frequency of EC200A-AU

Transmit (MHz)	Receive (MHz)
824–849	869–894
880–915	925–960
1710–1785	1805–1880
1850–1910	1930–1990
1920–1980	2110–2170
1850–1910	1930–1990
1710–1755	2110–2155
824–849	869–894
880–915	925–960
1920–1980	2110–2170
1850–1910	1930–1990
1710–1785	1805–1880
1710–1755	2110–2155
824–849	869–894
	824–849 880–915 1710–1785 1850–1910 1920–1980 1850–1910 1710–1755 824–849 880–915 1920–1980 1850–1910 1710–1785 1710–1755

LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B28	703–748	758–803
LTE-FDD B66	1710–1780	2110–2180
LTE-TDD B40	2300–2400	2300–2400

Table 30: Operating Frequency of EC200A-EU

Operating Frequency	Transmit (MHz)	Receive (MHz)
EGSM900	880–915	925–960
DCS1800	1710–1785	1805–1880
WCDMA B1	1920–1980	2110–2170
WCDMA B5	824–849	869–894
WCDMA B8	880–915	925–960
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B20	832–862	791–821
LTE-FDD B28	703–748	758–803
LTE-TDD B38	2570–2620	2570–2620
LTE-TDD B40	2300–2400	2300–2400
LTE-TDD B41	2535–2675	2535–2675

Table 31: Operating Frequency of EC200A-EL

Operating Frequency	Transmit (MHz)	Receive (MHz)
WCDMA B1	1920–1980	2110–2170
WCDMA B5	824–849	869–894
WCDMA B8	880–915	925–960
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B20	832–862	791–821
LTE-FDD B28	703–748	758–803
LTE-TDD B38	2570–2620	2570–2620
LTE-TDD B40	2300–2400	2300–2400
LTE-TDD B41	2535–2675	2535–2675

B41 only supports 140 MHz operating frequency (2535–2675 MHz).

5.1.2. Tx Power

The following table shows the Tx-power of the module.

Table 32: Tx Power

Frequency Bands	Max. Tx Power	Comments
GSM850	33 dBm ±2 dB	5 dBm ±5 dB
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB

DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
PCS1900	30 dBm ±2 dB	0 dBm ±5 dB
GSM850 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
GSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
PCS1900 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
WCDMA	23 dBm ±2 dB	< -49 dBm
LTE-FDD	23 dBm ±2 dB	< -39 dBm
LTE-TDD	23 dBm ±2 dB	< -39 dBm

For GPRS transmission on 4 uplink timeslots, the maximum output power reduction is 4.0 dB. The design conforms to 3GPP TS 51.010-1 **subclause 13.16**.

5.1.3. Rx Sensitivity

The following table shows conducted Rx sensitivity of the module.

Table 33: Conducted RF Receiving Sensitivity of EC200A-CN (Unit: dBm)

Eroguenov	Receiving Sensitivity (Typ.)			3GPP
Frequency	Primary	Diversity	SIMO	Requirement (SIMO)
EGSM900	-109	-	-	-102.4
DCS1800	-107	-	-	-102.4
WCDMA B1	-109.4	-	-	-106.7
WCDMA B5	-109.7	-	-	-104.7
WCDMA B8	-110.2	-	-	-103.7
LTE-FDD B1	-97.2	-97.5	-100.4	-96.3
LTE-FDD B3	-96.5	-97.2	-99.9	-93.3

LTE-FDD B5	-98.1	-99	-101.6	-94.3
LTE-FDD B8	-98	-98.8	-101.4	-93.3
LTE-TDD B34	-96.3	-97.6	-100	-96.3
LTE-TDD B38	-97	-96.8	-99.9	-96.3
LTE-TDD B39	-97.2	-97	-100.1	-96.3
LTE-TDD B40	-97.4	-98	-100.7	-96.3
LTE-TDD B41	-96	-96	-99	-94.3

Table 34: Conducted RF Receiving Sensitivity of EC200A-AU (Unit: dBm)

Fraguency	F	Receiving Sensitivi	ty (Typ.)	3GPP
Frequency	Primary	Diversity	SIMO	Requirement (SIMO)
GSM850	-109.3	-	-	-102.4
EGSM900	-108.2	-	-	-102.4
DCS1800	-106.8	-	-	-102.4
PCS1900	-107	-	-	-102.4
WCDMA B1	-109.2	-	-	-106.7
WCDMA B2	-107.7	-	-	-104.7
WCDMA B4	-109.2	-	-	-106.7
WCDMA B5	-110.7	-	-	-104.7
WCDMA B8	-110.2	-	-	-103.7
LTE-FDD B1	-97.2	-97.5	-100.4	-96.3
LTE FDD B2	-96.1	-97.8	-100	-94.3
LTE-FDD B3	-96.5	-97.2	-99.9	-93.3
LTE FDD B4	-96.6	-97.4	-100	-96.3
LTE-FDD B5	-98.2	-99	-101.6	-94.3
LTE-FDD B7	-95.6	-96.7	-99.2	-94.3

LTE-FDD B8	-98	-98.8	-101.4	-93.3
LTE-FDD B28	-98.5	-99.3	-101.9	-94.8
LTE-FDD B66	-95.5	-97.7	-99.7	-95.8
LTE-TDD B40	-96.9	-98.5	-100.8	-96.3

Table 35: Conducted RF Receiving Sensitivity of EC200A-EU (Unit: dBm)

Francis	Receiving Sensitivity (Typ.)			3GPP
Frequency	Primary	Diversity	SIMO	Requirement (SIMO)
EGSM900	-108.7	-	-	-102.4
DCS1800	-107	-	-	-102.4
WCDMA B1	-109.7	-	-	-106.7
WCDMA B5	-111	-	-	-104.7
WCDMA B8	-110.5	-	-	-103.7
LTE-FDD B1	-97.2	-97.5	-100.4	-96.3
LTE-FDD B3	-96.5	-97.2	-99.9	-93.3
LTE-FDD B5	-98.2	-99	-101.6	-94.3
LTE-FDD B7	-95.6	-96.7	-99.2	-94.3
LTE-FDD B8	-98	-98.8	-101.4	-93.3
LTE-FDD B20	-97.4	-98.7	-101.1	-93.3
LTE-FDD B28	-98.5	-99.5	-102	-94.8
LTE-TDD B38	-96.7	-97	-99.9	-96.3
LTE-TDD B40	-97.4	-98.6	-101.1	-96.3
LTE-TDD B41	-96	-96	-99	-94.3

Table 36: Conducted RF Receiving Sensitivity of EC200A-EL (Unit: dBm)

Frequency	Receiving Sensitivity (Typ.)			3GPP Requirement
riequency	Primary	Diversity	SIMO	(SIMO)
WCDMA B1	-109.6	-	-	-106.7
WCDMA B5	-109.7	-	-	-104.7
WCDMA B8	-110	-	-	-103.7
LTE-FDD B1	-98.1	-98.9	-101.5	-96.3
LTE-FDD B3	-97.7	-96.8	-100.3	-93.3
LTE-FDD B5	-98.0	-98.1	-101.0	-94.3
LTE-FDD B7	-97.8	-96.8	-100.3	-94.3
LTE-FDD B8	-99.2	-99.3	-102.2	-93.3
LTE-FDD B20	-98.8	-97.6	-101.2	-93.3
LTE-FDD B28	-100.1	-98.8	-102.5	-94.8
LTE-TDD B38	-97.6	-97.5	-100.5	-96.3
LTE-TDD B40	-98.1	-97.8	-100.9	-96.3
LTE-TDD B41	-98.3	-96.7	-100.5	-94.3

5.1.4. Reference Design

The module provides two RF antenna interfaces for antenna connection.

It is recommended to reserve a π -type matching circuit for better RF performance, and the π -type matching components (C1, R1, C2 and C3, R2, C4) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

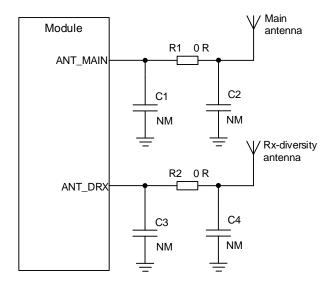


Figure 35: Reference Circuit for RF Antenna Interfaces

5.2. Reference Design of RF Routing

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

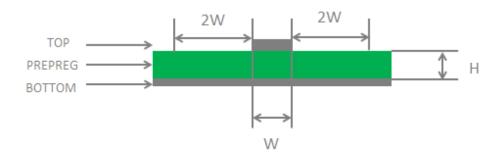


Figure 36: Microstrip Design on a 2-layer PCB

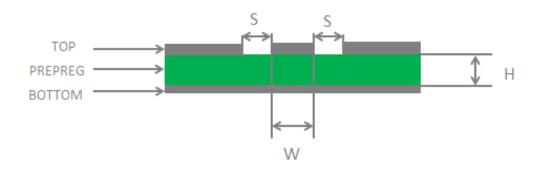


Figure 37: Coplanar Waveguide Design on a 2-layer PCB

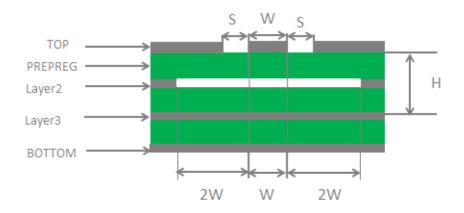


Figure 38: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

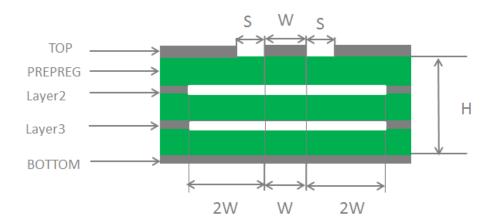


Figure 39: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [6].

5.3. Requirements for Antenna Design

Table 37: Requirements for Antenna Design

Antenna Type	Requirements
	VSWR: ≤ 2
	Efficiency: > 30 %
	Gain: 1dBi
	Max. input power: 50 W
GSM/UMTS/LTE	Input impedance: 50 Ω
	Cable insertion loss:
	< 1 dB: LB (< 1 GHz)
	< 1.5 dB: MB (1–2.3 GHz)
	< 2 dB: HB (> 2.3 GHz)

5.4. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT receptacle provided by Hirose.

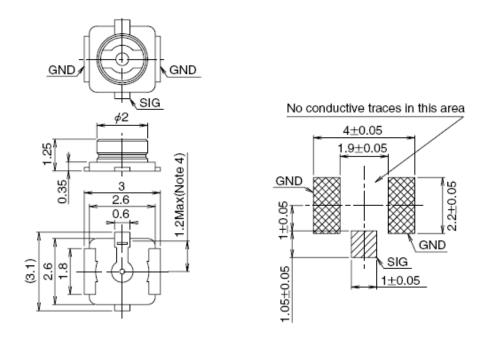


Figure 40: Dimensions o fthe Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	4	£ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.4	87	S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 41: Mechanicals of Mated Plugs

The following figure describes the space factor of mated connector.

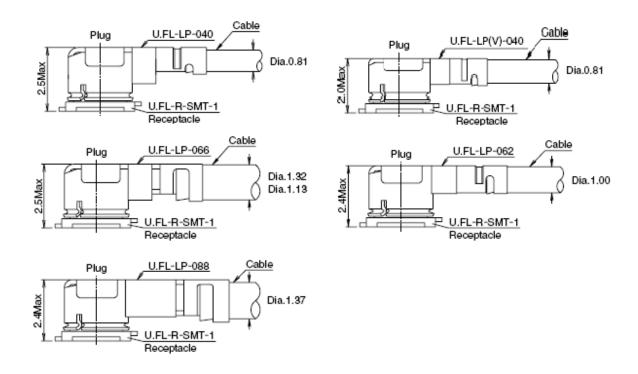


Figure 42: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://hirose.com.

6 Electrical Characteristics & Reliability

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 38: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	5.5	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	-	0.8 8	A
Peak Current of VBAT_RF	-	2.0	A
Voltage on Digital Pins	-0.3	2.3	V
Voltage at ADC0	0	VBAT_BB	V
Voltage at ADC1	0	VBAT_BB	V

⁸ If you choose to use the module that supports the APT function, the VBAT_BB must provide sufficient current of at least 1.5 A. For details, please consult Quectel Technical Support.

6.2. Power Supply Ratings

Table 39: Module's Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must be kept between the minimum and maximum values.	3.4	3.8	4.5	V
	Voltage drop during transmitting burst	Maximum power control level	0	0	400	mV
Ivbat_rf	Peak supply current	Maximum power control level	-	-	2.0	А
USB_VBUS	USB connection detection		3.0	5.0	5.25	V

6.3. Power Consumption

Table 40: Current Consumption of EC200A-CN

Description	Conditions	Тур.	Unit
OFF state	Power down	12	μΑ
	AT+CFUN=0 (USB disconnected)	0.84	mA
	EGSM900 @ DRX = 2 (USB disconnected)	1.56	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.18	mA
Sloop state	EGSM900 @ DRX = 9 (USB disconnected)	1.07	mA
Sleep state	DCS1800 @ DRX = 2 (USB disconnected)	1.56	mA
	DCS1800 @ DRX = 5 (USB disconnected)	1.18	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.08	mA
	WCDMA @ PF = 64 (USB disconnected)	2.44	mA

	WCDMA @ PF = 128 (USB disconnected)	1.69	mA
	WCDMA @ PF = 256 (USB disconnected)	1.31	mA
	WCDMA @ PF = 512 (USB disconnected)	1.12	mA
	LTE-FDD @ PF = 32 (USB disconnected)	2.16	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.54	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.26	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.12	mA
	LTE-TDD @ PF = 32 (USB disconnected)	2.20	mA
	LTE-TDD @ PF = 64 (USB disconnected)	1.56	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.26	mA
	LTE-TDD @ PF = 256 (USB disconnected)	1.12	mA
	EGSM900 @ DRX = 5 (USB disconnected)	13.90	mA
	EGSM900 @ DRX = 5 (USB connected)	37.46	mA
	WCDMA @ PF = 64 (USB disconnected)	14.90	mA
I-lla atata	WCDMA @ PF = 64 (USB connected)	37.96	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	14.41	mA
	LTE-FDD @ PF = 64 (USB connected)	37.68	mA
	LTE-TDD @ PF = 64 (USB disconnected)	14.43	mA
	LTE-TDD @ PF = 64 (USB connected)	37.81	mA
	EGSM900 4DL/1UL @ 32.33 dBm	226	mA
	EGSM900 3DL/2UL @ 32.29 dBm	410	mA
	EGSM900 2DL/3UL @ 30.79 dBm	505	mA
GPRS data transfer	EGSM900 1DL/4UL @ 28.87 dBm	560	mA
	DCS1800 4DL/1UL @ 29.61 dBm	156	mA
	DCS1800 3DL/2UL @ 29.61 dBm	266	mA

	DCS1800 2DL/3UL @ 28.14 dBm	314	mA
	DCS1800 1DL/4UL @ 26.28 dBm	338	mA
	EGSM900 4DL/1UL @ 26.54 dBm	155	mA
	EGSM900 3DL/2UL @ 26.34 dBm	263	mA
	EGSM900 2DL/3UL @ 24.61 dBm	334	mA
EDGE data	EGSM900 1DL/4UL @ 22.31 dBm	398	mA
transfer	DCS1800 4DL/1UL @ 25.27 dBm	129	mA
	DCS1800 3DL/2UL @ 25.16 dBm	213	mA
	DCS1800 2DL/3UL @ 23.84 dBm	282	mA
	DCS1800 1DL/4UL @ 21.95 dBm	347	mA
	WCDMA B1 HSDPA @ 22.24 dBm	567	mA
	WCDMA B5 HSDPA @ 22.16 dBm	503	mA
WCDMA data	WCDMA B8 HSDPA @ 22.20dBm	515	mA
transfer	WCDMA B1 HSUPA @ 21.85 dBm	548	mA
	WCDMA B5 HSUPA @ 21.63 dBm	479	mA
	WCDMA B8 HSUPA @ 21.62 dBm	496	mA
	LTE-FDD B1 @ 22.87 dBm	609	mA
	LTE-FDD B3 @ 22.27 dBm	552	mA
	LTE-FDD B5 @ 22.44 dBm	528	mA
LTE data transfer	LTE-FDD B8 @ 22.54 dBm	564	mA
	LTE-TDD B34 @ 22.66 dBm	262	mA
	LTE-TDD B38 @ 22.90 dBm	346	mA
	LTE-TDD B39 @ 22.93 dBm	266	mA
	LTE-TDD B40 @ 22.74 dBm	321	mA
	LTE-TDD B41 @ 23.16 dBm	335	mA

	EGSM900 PCL = 5 @ 32.25 dBm	276	mA
	EGSM900 PCL = 12 @ 18.96 dBm	117	mA
GSM voice call	EGSM900 PCL = 19 @ 5.08 dBm	92	mA
GSM voice call	DCS1800 PCL = 0 @ 29.63 dBm	218	mA
	DCS1800 PCL = 7 @ 15.97 dBm	108	mA
	DCS1800 PCL = 15 @ 0.45 dBm	90	mA
WCDMA voice call	WCDMA B1 @ 22.81 dBm	594	mA
	WCDMA B5 @ 22.81 dBm	529	mA
	WCDMA B8 @ 22.94 dBm	537	mA

Table 41: Current Consumption of EC200A-AU

Description	Conditions	Тур.	Unit
OFF state	Power down	12	μΑ
	AT+CFUN=0 (USB disconnected)	0.73	mA
	EGSM900 @ DRX = 2 (USB disconnected)	1.50	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.16	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.33	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.05	mA
Class state	DCS1800 @ DRX = 2 (USB disconnected)	1.46	mA
Sleep state	DCS1800 @ DRX = 5 (USB disconnected)	1.15	mA
	DCS1800 @ DRX = 5 (USB suspend)	1.33	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.04	mA
	WCDMA @ PF = 64 (USB disconnected)	1.98	mA
	WCDMA @ PF = 64 (USB suspend)	1.28	mA
	WCDMA @ PF = 128 (USB disconnected)	1.41	mA

	WCDMA @ PF = 256 (USB disconnected)	1.10	mA
	WCDMA @ PF = 512 (USB disconnected)	1.00	mA
	LTE-FDD @ PF = 32 (USB disconnected)	2.01	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.42	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.59	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.14	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.98	mA
	LTE-TDD @ PF = 32 (USB disconnected)	2.00	mA
	LTE-TDD @ PF = 64 (USB disconnected)	1.43	mA
	LTE-TDD @ PF = 64 (USB suspend)	1.59	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.15	mA
	LTE-TDD @ PF = 256 (USB disconnected)	0.99	mA
	EGSM900 @ DRX = 5 (USB disconnected)	10.59	mA
	EGSM900 @ DRX = 5 (USB connected)	27.72	mA
	DCS1800 @ DRX = 5 (USB disconnected)	10.89	mA
	DCS1800 @ DRX = 5 (USB connected)	27.70	mA
	WCDMA @ PF = 64 (USB disconnected)	13.23	mA
Idle state	WCDMA @ PF = 64 (USB connected)	31.31	mA
	LTE-FDD @ PF = 64 (USB disconnected)	15.07	mA
	LTE-FDD @ PF = 64 (USB connected)	32.95	mA
	LTE-TDD @ PF = 64 (USB disconnected)	17.55	mA
	LTE-TDD @ PF = 64 (USB connected)	32.94	mA
	GSM850 4DL/1UL @ 33.54 dBm	197	mA
GPRS data transfer	GSM850 3DL/2UL @ 33.55 dBm	368	mA
	GSM850 2DL/3UL @ 30.72 dBm	453	mA

	GSM850 1DL/4UL @ 28.84 dBm	503	mA
	EGSM900 4DL/1UL @ 33.84 dBm	219	mA
	EGSM900 3DL/2UL @ 33.80 dBm	410	mA
	EGSM900 2DL/3UL @ 31.13 dBm	510	mA
	EGSM900 1DL/4UL @ 29.17 dBm	560	mA
	DCS1800 4DL/1UL @ 30.41 dBm	137	mA
	DCS1800 3DL/2UL @ 30.41 dBm	247	mA
	DCS1800 2DL/3UL @ 28.97 dBm	300	mA
	DCS1800 1DL/4UL @ 26.45 dBm	312	mA
	PCS1900 4DL/1UL @ 30.43 dBm	139	mA
	PCS1900 3DL/2UL @ 30.44 dBm	251	mA
	PCS1900 2DL/3UL @ 27.50 dBm	315	mA
	PCS1900 1DL/4UL @ 26.16 dBm	351	mA
	GSM850 4DL/1UL @ 28.15 dBm	132	mA
	GSM850 3DL/2UL @ 28.15 dBm	235	mA
	GSM850 2DL/3UL @ 26.01 dBm	307	mA
	GSM850 1DL/4UL @ 23.99 dBm	371	mA
	EGSM900 4DL/1UL @ 27.84 dBm	137	mA
	EGSM900 3DL/2UL @ 27.68 dBm	241	mA
EDGE data transfer	EGSM900 2DL/3UL @ 25.86 dBm	314	mA
	EGSM900 1DL/4UL @ 23.83 dBm	377	mA
	DCS1800 4DL/1UL @ 26.63 dBm	118	mA
	DCS1800 3DL/2UL @ 26.54 dBm	210	mA
	DCS1800 2DL/3UL @ 24.74 dBm	287	mA
	DCS1800 1DL/4UL @ 22.84 dBm	360	mA

	PCS1900 4DL/1UL @ 26.85 dBm	113	mA
	PCS1900 3DL/2UL @ 26.75 dBm	199	mA
	PCS1900 2DL/3UL @ 25.12 dBm	268	mA
	PCS1900 1DL/4UL @ 23.23 dBm	339	mA
	WCDMA B1 HSDPA @ 22.57 dBm	576	mA
	WCDMA B2 HSDPA @ 22.04 dBm	564	mA
	WCDMA B4 HSDPA @ 22.45 dBm	546	mA
	WCDMA B5 HSDPA @ 22.18 dBm	492	mA
NACENAA data taasa fa a	WCDMA B8 HSDPA @ 22.21 dBm	506	mA
WCDMA data transfer	WCDMA B1 HSUPA @ 22.10 dBm	557	mA
	WCDMA B2 HSUPA @ 21.54 dBm	542	mA
	WCDMA B4 HSUPA @ 21.82 dBm	517	mA
	WCDMA B5 HSUPA @ 21.57 dBm	475	mA
	WCDMA B8 HSUPA @ 21.70 dBm	489	mA
	LTE-FDD B1 @ 23.18 dBm	605	mA
	LTE-FDD B2 @ 23.42 dBm	662	mA
	LTE-FDD B3 @ 23.29 dBm	554	mA
	LTE-FDD B4 @ 23.21 dBm	561	mA
	LTE-FDD B5 @ 22.45 dBm	502	mA
LTE data transfer	LTE-FDD B7 @ 23.30 dBm	766	mA
	LTE-FDD B8 @ 22.65 dBm	554	mA
	LTE-FDD B28A @ 22.40 dBm	483	mA
	LTE-FDD B28B @ 22.50 dBm	446	mA
	LTE-FDD B66 @ 22.77 dBm	577	mA
	LTE-TDD B40 @ 22.48 dBm	302	mA

	GSM850 PCL = 5 @ 32.87 dBm	217	mA
	GSM850 PCL = 12 @ 19.62 dBm	78	mA
	GSM850 PCL = 19 @ 5.66 dBm	49	mA
	EGSM900 PCL = 5 @ 33.02 dBm	240	mA
	EGSM900 PCL = 12 @ 19.77 dBm	83	mA
GSM voice call	EGSM900 PCL = 19 @ 5.74 dBm	50	mA
GSIVI VOICE CAII	DCS1800 PCL = 0 @ 29.42 dBm	146	mA
	DCS1800 PCL = 7 @ 16.20 dBm	62	mA
	DCS1800 PCL = 15 @ 0.69 dBm	48	mA
	PCS1900 PCL = 0 @ 29.77 dBm	152	mA
	PCS1900 PCL = 7 @ 16.43 dBm	63	mA
	PCS1900 PCL = 15 @ 1.11 dBm	48	mA
	WCDMA B1 @ 23.26 dBm	610	mA
WCDMA voice call	WCDMA B2 @ 22.80 dBm	594	mA
	WCDMA B4 @ 23.44 dBm	589	mA
	WCDMA B5 @ 22.80 dBm	519	mA
	WCDMA B8 @ 22.85 dBm	525	mA

Table 42: Current Consumption of EC200A-EU

Description	Conditions	Тур.	Unit
OFF state	Power down	11	μΑ
Sleep state	AT+CFUN=0 (USB disconnected)	0.80	mA
	EGSM900 @ DRX = 2 (USB disconnected)	1.44	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.12	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.28	mA

	EGSM900 @ DRX = 9 (USB disconnected)	1.01	mA
	DCS1800 @ DRX = 2 (USB disconnected)	1.44	mA
	DCS1800 @ DRX = 5 (USB disconnected)	1.12	mA
	DCS1800 @ DRX = 5 (USB suspend)	1.27	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.01	mA
	WCDMA @ PF = 64 (USB disconnected)	2.07	mA
	WCDMA @ PF = 64 (USB suspend)	2.23	mA
	WCDMA @ PF = 128 (USB disconnected)	1.51	mA
	WCDMA @ PF = 256 (USB disconnected)	1.22	mA
	WCDMA @ PF = 512 (USB disconnected)	1.08	mA
	LTE-FDD @ PF = 32 (USB disconnected)	2.08	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.49	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.65	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.24	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.11	mA
	LTE-TDD @ PF = 32 (USB disconnected)	2.14	mA
	LTE-TDD @ PF = 64 (USB disconnected)	1.54	mA
	LTE-TDD @ PF = 64 (USB suspend)	1.69	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.25	mA
	LTE-TDD @ PF = 256 (USB disconnected)	1.13	mA
	EGSM900 @ DRX = 5 (USB disconnected)	10.58	mA
	EGSM900 @ DRX = 5 (USB connected)	27.61	mA
Idle state	DCS1800 @ DRX = 5 (USB disconnected)	10.88	mA
	DCS1800 @ DRX = 5 (USB connected)	27.58	mA
	WCDMA @ PF = 64 (USB disconnected)	11.44	mA

	WCDMA @ PF = 64 (USB connected)	27.81	mA
	LTE-FDD @ PF = 64 (USB disconnected)	11.42	mA
	LTE-FDD @ PF = 64 (USB connected)	27.41	mA
	LTE-TDD @ PF = 64 (USB disconnected)	11.37	mA
	LTE-TDD @ PF = 64 (USB connected)	27.42	mA
	EGSM900 4DL/1UL @ 32.60 dBm	204	mA
	EGSM900 3DL/2UL @ 32.55 dBm	379	mA
	EGSM900 2DL/3UL @ 31.18 dBm	482	mA
	EGSM900 1DL/4UL @ 29.28 dBm	543	mA
GPRS data transfer	DCS1800 4DL/1UL @ 29.91 dBm	138	mA
	DCS1800 3DL/2UL @ 29.92 dBm	249	mA
	DCS1800 2DL/3UL @ 28.41 dBm	302	mA
	DCS1800 1DL/4UL @ 26.17 dBm	317	mA
	EGSM900 4DL/1UL @ 26.67 dBm	134	mA
	EGSM900 3DL/2UL @ 26.68 dBm	237	mA
	EGSM900 2DL/3UL @ 24.99 dBm	312	mA
	EGSM900 1DL/4UL @ 22.78 dBm	371	mA
EDGE data transfer	DCS1800 4DL/1UL @ 25.96 dBm	118	mA
	DCS1800 3DL/2UL @ 25.85 dBm	208	mA
	DCS1800 2DL/3UL @ 24.31 dBm	289	mA
	DCS1800 1DL/4UL @ 22.00 dBm	365	mA
	WCDMA B1 HSDPA @ 22.38 dBm	533	mA
MODMA deta transfer	WCDMA B5 HSDPA @ 22.11 dBm	472	mA
WCDMA data transfer	WCDMA B8 HSDPA @ 22.02 dBm	478	mA
	WCDMA B1 HSUPA @ 21.70 dBm	512	mA

	WCDMA B5 HSUPA @ 21.27 dBm	448	mA
	WCDMA B8 HSUPA @ 21.20 dBm	460	mA
	LTE-FDD B1 @ 23.03 dBm	567	mA
	LTE-FDD B3 @ 23.29 dBm	545	mA
	LTE-FDD B5 @ 22.61 dBm	496	mA
	LTE-FDD B7 @ 23.18 dBm	712	mA
LTE data transfer	LTE-FDD B8 @ 22.63 dBm	526	mA
LTE data transfer	LTE-FDD B20 @ 23.01 dBm	547	mA
	LTE-FDD B28 @ 22.36 dBm	488	mA
	LTE-TDD B38 @ 22.62 dBm	340	mA
	LTE-TDD B40 @ 22.89 dBm	309	mA
	LTE-TDD B41 @ 23.25 dBm	359	mA
	EGSM900 PCL = 5 @ 32.47 dBm	228	mA
	EGSM900 PCL = 12 @ 19.37 dBm	80	mA
CCM vaice cell	EGSM900 PCL = 19 @ 5.40 dBm	50	mA
GSM voice call	DCS1800 PCL = 0 @ 29.67 dBm	147	mA
	DCS1800 PCL = 7 @ 16.03 dBm	61	mA
	DCS1800 PCL = 15 @ 0.51 dBm	48	mA
	WCDMA B1 @ 23.01 dBm	558	mA
WCDMA voice call	WCDMA B5 @ 22.79 dBm	500	mA
	WCDMA B8 @ 22.74 dBm	509	mA

Table 43: Current Consumption of EC200A-EL

Description	Conditions	Тур.	Unit
OFF state	Power down	10	μΑ
	AT+CFUN=0 (USB disconnected)	0.86	mA
	WCDMA @ PF = 64 (USB disconnected)	2.13	mA
	WCDMA @ PF = 64 (USB suspend)	2.29	mA
	WCDMA @ PF = 128 (USB disconnected)	1.56	mA
	WCDMA @ PF = 256 (USB disconnected)	1.27	mA
	WCDMA @ PF = 512 (USB disconnected)	1.12	mA
	LTE-FDD @ PF = 32 (USB disconnected)	2.15	mA
Observator	LTE-FDD @ PF = 64 (USB disconnected)	1.57	mA
Sleep state	LTE-FDD @ PF = 64 (USB suspend)	1.72	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.28	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.11	mA
	LTE-TDD @ PF = 32 (USB disconnected)	2.18	mA
	LTE-TDD @ PF = 64 (USB disconnected)	1.57	mA
	LTE-TDD @ PF = 64 (USB suspend)	1.73	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.28	mA
	LTE-TDD @ PF = 256 (USB disconnected)	1.13	mA
	WCDMA @ PF = 64 (USB disconnected)	11.53	mA
	WCDMA @ PF = 64 (USB connected)	28.29	mA
	LTE-FDD @ PF = 64 (USB disconnected)	11.39	mA
Idle state	LTE-FDD @ PF = 64 (USB connected)	28.22	mA
	LTE-TDD @ PF = 64 (USB disconnected)	11.16	mA
	LTE-TDD @ PF = 64 (USB connected)	28.34	mA

	WCDMA B1 HSDPA @ 22.38 dBm	604	mA
	WCDMA B5 HSDPA @ 22.49 dBm	555	mA
WCDMA data transfer	WCDMA B8 HSDPA @ 22.61 dBm	614	mA
WODIWA data transfer	WCDMA B1 HSUPA @ 21.96 dBm	584	mA
	WCDMA B5 HSUPA @ 21.97dBm	537	mA
	WCDMA B8 HSUPA @ 22.10dBm	588	mA
	LTE-FDD B1 @ 23.60 dBm	655	mA
	LTE-FDD B3 @ 23.23 dBm	656	mA
	LTE-FDD B5 @ 23.24 dBm	580	mA
	LTE-FDD B7 @ 23.15 dBm	705	mA
LTE data transfer	LTE-FDD B8 @ 23.33 dBm	643	mA
LIE data transier	LTE-FDD B20 @ 23.64 dBm	618	mA
	LTE-FDD B28 @ 23.89 dBm	627	mA
	LTE-TDD B38 @ 22.86 dBm	422	mA
	LTE-TDD B40 @ 23.08 dBm	401	mA
	LTE-TDD B41 @ 23.59 dBm	426	mA
	WCDMA B1 @ 23.06 dBm	637	mA
WCDMA voice call	WCDMA B5 @ 23.18 dBm	575	mA
	WCDMA B8 @ 23.32 dBm	642	mA

6.4. Digital I/O Characteristics

Table 44: VDD_EXT I/O Requirements

Parameter	Description	Min.	Max.	Unit
VDD_EXT	Power supply	1.67	1.93	V
V _{IH}	Input high voltage	0.7 × VDD_EXT	VDD_EXT + 0.2	V
V _{IL}	Input low voltage	-0.3	0.3 × VDD_EXT	V
V _{OH}	Output high voltage	VDD_EXT - 0.2	VDD_EXT	V
V _{OL}	Output low voltage	0	0.2	V

Table 45: (U)SIM Low-voltage I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	1.67	1.93	V
VIH	Input high voltage	0.8 × USIM_VDD	USIM_VDD	V
V _{IL}	Input low voltage	-0.3	0.12 × USIM_VDD	V
V _{OH}	Output high voltage	0.7 × USIM_VDD	USIM_VDD	V
V _{OL}	Output low voltage	0	0.15 × USIM_VDD	V

Table 46: (U)SIM High-voltage I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	2.7	3.3	V
VIH	Input high voltage	0.8 × USIM_VDD	USIM_VDD	V
V _{IL}	Input low voltage	-0.3	0.12 × USIM_VDD	V
V _{OH}	Output high voltage	0.7 × USIM_VDD	USIM_VDD	V
VoL	Output low voltage	0	0.15 × USIM_VDD	V

Table 47: SDIO Low-voltage I/O Requirements

Parameter	Description	Min.	Max.	Unit
SD_SDIO_VDD	Power supply	1.67	1.93	V
VIH	Input high voltage	0.7 × SD_SDIO_VDD	SD_SDIO_VDD + 0.2	V
V _{IL}	Input low voltage	-0.3	0.3 × SD_SDIO_VDD	V
V _{OH}	Output high voltage	SD_SDIO_VDD - 0.2	SD_SDIO_VDD	V
V _{OL}	Output low voltage	0	0.2	V

Table 48: SDIO High-voltage I/O Requirements

Parameter	Description	Min.	Max.	Unit
SD_SDIO_VDD	Power supply	2.7	3.05	V
V _{IH}	Input high voltage	2.0	SD_SDIO_VDD + 0.3	V
V _{IL}	Input low voltage	-0.3	0.8	V
V _{OH}	Output high voltage	2.4	SD_SDIO_VDD	V
V _{OL}	Output low voltage	0	0.3	V

6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 49: Electrostatics Discharge Characteristics (Temperature: 25-30 °C, Humidity: 40 ±5 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±8	±10	kV
All Antenna Interfaces	±8	±10	kV

Other Interfaces ±0.5 ±1 kV

6.6. Operating and Storage Temperatures

Table 50: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ⁹	-35	+25	+75	°C
Extended Operating Temperature Range 10	-40	-	+85	°C
Storage temperature range	-40	-	+90	°C

EC200A_Series_QuecOpen_Hardware_Design

⁹ Within the operating temperature range, the module meets 3GPP specifications.

¹⁰ Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

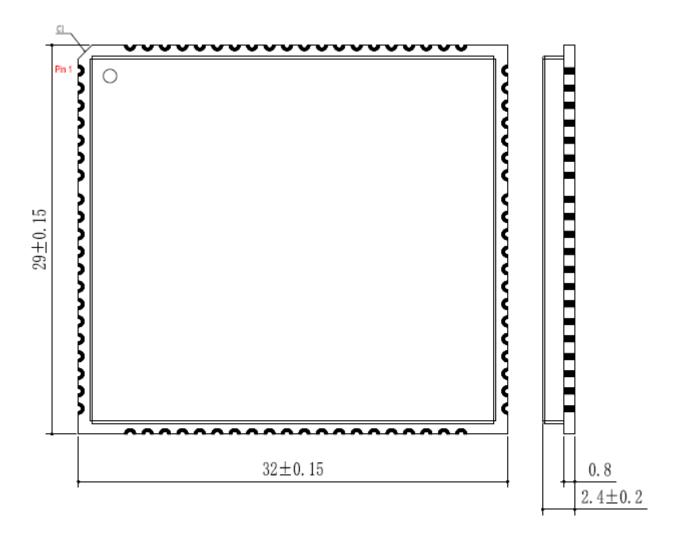
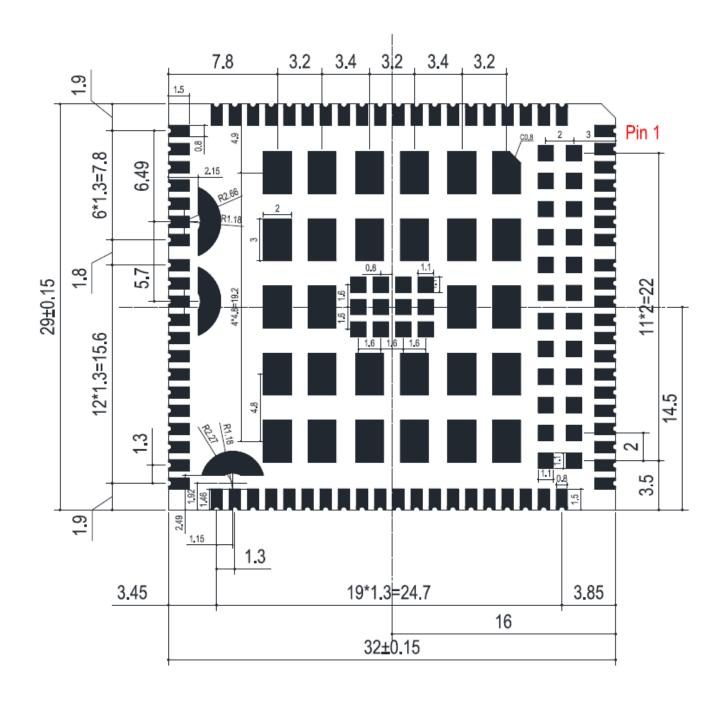
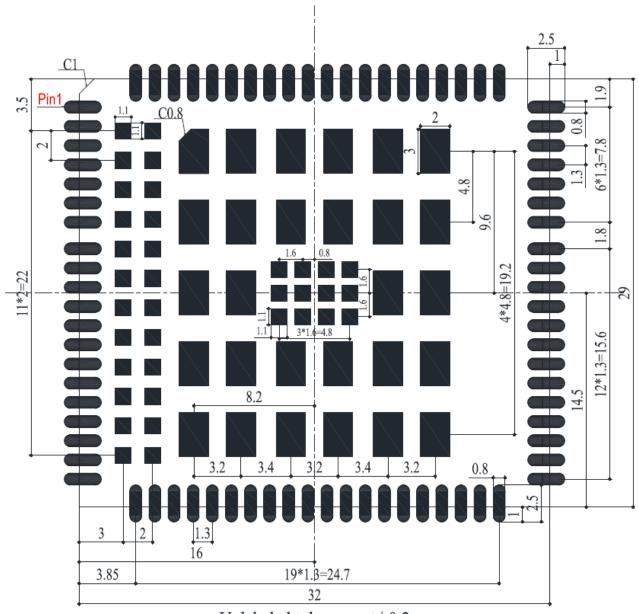


Figure 43: Module Top and Side Dimensions (Unit: mm)




Figure 44: Module Bottom Dimensions View (Unit: mm)

NOTE

The package warpage level of the module refers to the JEITA ED-7306 standard.

7.2. Recommended Footprint

Unlabeled tolerance: +/-0.2mm

Figure 45: Recommended Footprint (Perspective View)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

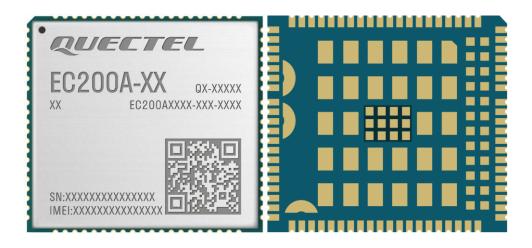


Figure 46: Top and Bottom Views of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ¹¹ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

¹¹ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- Take out the module from the package and put it on high-temperature-resistant fixtures before baking. All modules must be soldered to PCB within 24 hours after the baking, otherwise put them in the drying oven. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.15–0.20 mm. For more details, see **document [7]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

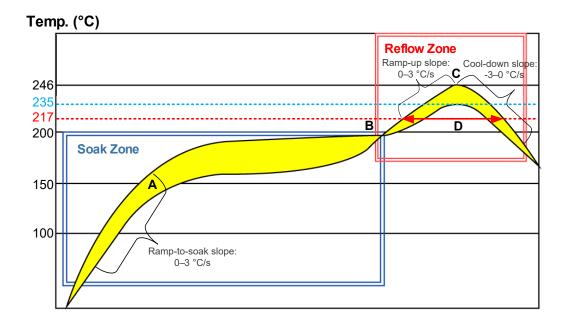


Figure 47: Recommended Reflow Soldering Thermal Profile

Table 51: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217°C)	40–70 s
Max temperature	235–246 °C
Cool-down slope	-3–0 °C/s
Reflow Cycle	
Max reflow cycle	1

NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints.

 Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
- 7. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document* [7].

8.3. Packaging Specifications

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

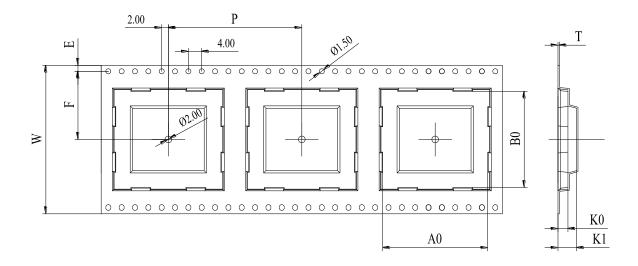


Figure 48: Carrier Tape Dimension Drawing (Unit: mm)

Table 52: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	Α0	В0	K0	K1	F	Е
44	44	0.35	32.5	29.5	3.0	3.8	20.2	1.75

8.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

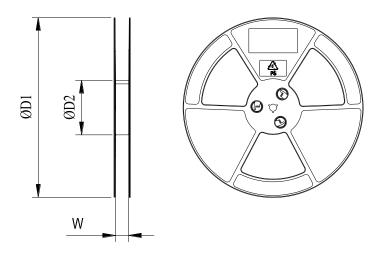
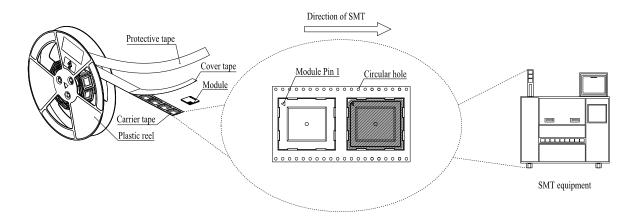



Figure 49: Plastic Reel Dimension Drawing

Table 53: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5

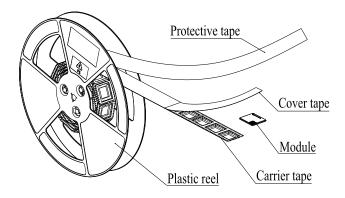
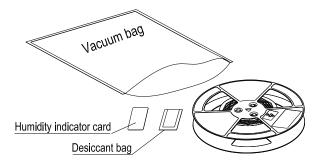
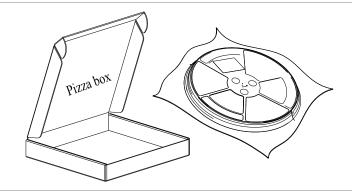

8.3.3. Mounting Direction

Figure 50: Mounting Direction




8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

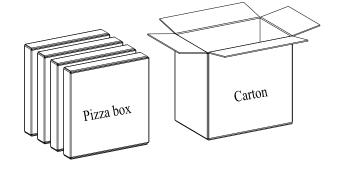


Figure 51: Packaging Process

9 Appendix References

Table 54: Related Documents

Document Name	
[1] Quectel_LTE_OPEN_EVB_User_Guide	
[2] Quectel_EC200x&EG91xN&EG912Y&EG950A_Series_AT_Commands_Manual	
[3] Quectel_EC200A&EC300R_Series_QuecOpen(SDK)_Low_Power_Mode_Application_Note	
[4] Quectel_EC200A_Series_QuecOpen(SDK)_GPIO_Configuration	
[5] Quectel_EC200A_Series_QuecOpen_ADC_Development Guide	
[6] Quectel_RF_Layout_Application_Note	
[7] Quectel_Module_SMT_Application_Note	

Table 55: Terms and Abbreviations

Abbreviation	Description
AMR	Adaptive Multi-Rate
APT	Average Power Tracking
bps	Bytes per second
CDMA	Code Division Multiple Access
CS	Coding Scheme
CTS	Clear To Send
DRX	Discontinuous Reception
DTE	Data Terminal Equipment

EFR	Enhanced Full Rate
EGSM	Enhanced GSM
ESD	Electrostatic Discharge
EVB	Evaluation Board
FDD	Frequency Division Duplexing
FOTA	Firmware Over-the-Air
FR	Full Rate
FTP	File Transfer Protocol
GMSK	Gaussian Filtered Minimum Shift Keying
GND	Ground
GSM	Global System for Mobile Communications
HR	Half Rate
HSDPA	High Speed Downlink Packet Access
HTTPS	Hypertext Transfer Protocol Secure
LGA	Land Grid Array
LTE	Long Term Evolution
MCS	Modulation and Coding Scheme
MMS	Multimedia Messaging Service
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PHY	Physical Layer Transceiver
PING	Packet Internet Groper
PPP	Point-to-Point Protocol
PSK	Phase Shift Keying

QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request To Send
SDIO	Secure Digital Input and Output Card
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TDD	Time Division Duplexing
UDP	User Datagram Protocol
UMTS	Universal Mobile Telecommunications System
USB	Universal Serial Bus
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnom	Nominal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value

VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access